{"title":"Unipotent ℓ-blocks for simply connected p-adic groups","authors":"Thomas Lanard","doi":"10.2140/ant.2023.17.1533","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math> be a nonarchimedean local field and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>-points of a connected simply connected reductive group over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>. We study the unipotent <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-blocks of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math>. To that end, we introduce the notion of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>-series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-Harish-Chandra theory. The <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-blocks are then constructed using these <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math>-series, with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> the order of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>q</mi></math> modulo <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>, and consistent systems of idempotents on the Bruhat–Tits building of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. We also describe the stable <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi></math>-block decomposition of the depth zero category of an unramified classical group. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1533","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Let be a nonarchimedean local field and the -points of a connected simply connected reductive group over . We study the unipotent -blocks of , for . To that end, we introduce the notion of -series for finite reductive groups. These series form a partition of the irreducible representations and are defined using Harish-Chandra theory and -Harish-Chandra theory. The -blocks are then constructed using these -series, with the order of modulo , and consistent systems of idempotents on the Bruhat–Tits building of . We also describe the stable -block decomposition of the depth zero category of an unramified classical group.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.