Isotriviality, integral points, and primitive primes in orbits in characteristic p

IF 0.9 1区 数学 Q2 MATHEMATICS
Alexander Carney, Wade Hindes, Thomas J. Tucker
{"title":"Isotriviality, integral points, and primitive primes in orbits in characteristic p","authors":"Alexander Carney, Wade Hindes, Thomas J. Tucker","doi":"10.2140/ant.2023.17.1573","DOIUrl":null,"url":null,"abstract":"<p>We prove a characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> version of a theorem of Silverman on integral points in orbits over number fields and establish a primitive prime divisor theorem for polynomials in this setting. In characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>, the Thue–Siegel–Dyson–Roth theorem is false, so the proof requires new techniques from those used by Silverman. The problem is largely that isotriviality can arise in subtle ways, and we define and compare three different definitions of isotriviality for maps, sets, and curves. Using results of Favre and Rivera-Letelier on the structure of Julia sets, we prove that if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>φ</mi></math> is a nonisotrivial rational function and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> is not exceptional for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>φ</mi></math>, then <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>φ</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math> is a nonisotrivial set for all sufficiently large <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>; we then apply diophantine results of Voloch and Wang that apply for all nonisotrivial sets. When <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>φ</mi></math> is a polynomial, we use the nonisotriviality of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>φ</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>β</mi><mo stretchy=\"false\">)</mo></math> for large <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> along with a partial converse to a result of Grothendieck in descent theory to deduce the nonisotriviality of the curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mi>ℓ</mi></mrow></msup>\n<mo>=</mo> <msup><mrow><mi>φ</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>β</mi></math> for large <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math> and small primes <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℓ</mi><mo>≠</mo><mi>p</mi></math> whenever <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>β</mi></math> is not postcritical; this enables us to prove stronger results on Zsigmondy sets. We provide some applications of these results, including a finite index theorem for arboreal representations coming from quadratic polynomials over function fields of odd characteristic. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"13 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2023.17.1573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We prove a characteristic p version of a theorem of Silverman on integral points in orbits over number fields and establish a primitive prime divisor theorem for polynomials in this setting. In characteristic p, the Thue–Siegel–Dyson–Roth theorem is false, so the proof requires new techniques from those used by Silverman. The problem is largely that isotriviality can arise in subtle ways, and we define and compare three different definitions of isotriviality for maps, sets, and curves. Using results of Favre and Rivera-Letelier on the structure of Julia sets, we prove that if φ is a nonisotrivial rational function and β is not exceptional for φ, then φn(β) is a nonisotrivial set for all sufficiently large n; we then apply diophantine results of Voloch and Wang that apply for all nonisotrivial sets. When φ is a polynomial, we use the nonisotriviality of φn(β) for large n along with a partial converse to a result of Grothendieck in descent theory to deduce the nonisotriviality of the curve y = φn(x) β for large n and small primes p whenever β is not postcritical; this enables us to prove stronger results on Zsigmondy sets. We provide some applications of these results, including a finite index theorem for arboreal representations coming from quadratic polynomials over function fields of odd characteristic.

特征p中轨道上的同构性、积分点和原始素数
我们证明了Silverman关于数域上轨道积分点的一个定理的一个特征p版本,并建立了多项式的一个原始素数除数定理。在特征p中,Thue–Siegel–Dyson–Roth定理是错误的,因此证明需要使用Silverman使用的新技术。问题很大程度上是各向同性可以以微妙的方式出现,我们定义并比较了映射、集合和曲线的三种不同的各向同性定义。利用Favre和Rivera Letelier关于Julia集结构的结果,我们证明了如果φ是一个非等幂有理函数,并且β对φ不例外,那么φ−n(β)对所有足够大的n都是非等幂集;然后,我们应用Voloch和Wang的丢番图结果,这些结果适用于所有的非等距集。当φ是多项式时,我们使用φ−n(β)对大n的非等私性,并与下降理论中Grothendieck的结果进行部分逆,来推导曲线y的非等私性ℓ= 大素数和小素数的φn(x)-βℓ≠β不是后临界时的p;这使我们能够在Zsigmondy集上证明更强的结果。我们提供了这些结果的一些应用,包括奇特征函数域上二次多项式树表示的有限指数定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信