{"title":"Lensless inline holographic Mueller matrix imaging","authors":"Yong Fang, Wei Li, Jinye Li, Juntao Hu","doi":"10.1007/s10043-023-00843-7","DOIUrl":null,"url":null,"abstract":"<div><p>With the advantages of a large field of view, portability, and cost-effectiveness, lensless imaging has been applied widely nowadays. However, as a powerful tool for complete polarimetric characterization of microstructural and optical properties of a medium, Mueller matrix imaging has not yet been integrated in lensless imaging scheme. Here we propose a lensless inline polarization holographic system for high-speed and high-resolution Mueller matrix imaging. Liquid crystal variable retarders are introduced to realize high-speed response and avoid vibrations and positioning errors. We apply the blind deconvolution for depolarized imaging reconstruction and the back-propagation approach for polarization hologram reconstruction, respectively. The polarimetric imaging ability and resolution performance of the proposed technique are demonstrated. Furthermore, Mueller matrix images and certain quantitative polarimetric parameters of biological samples are calculated. The proposed method can be easily implemented and integrated in various lensless imaging techniques for on-chip polarimetric imaging.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"30 6","pages":"606 - 616"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-023-00843-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advantages of a large field of view, portability, and cost-effectiveness, lensless imaging has been applied widely nowadays. However, as a powerful tool for complete polarimetric characterization of microstructural and optical properties of a medium, Mueller matrix imaging has not yet been integrated in lensless imaging scheme. Here we propose a lensless inline polarization holographic system for high-speed and high-resolution Mueller matrix imaging. Liquid crystal variable retarders are introduced to realize high-speed response and avoid vibrations and positioning errors. We apply the blind deconvolution for depolarized imaging reconstruction and the back-propagation approach for polarization hologram reconstruction, respectively. The polarimetric imaging ability and resolution performance of the proposed technique are demonstrated. Furthermore, Mueller matrix images and certain quantitative polarimetric parameters of biological samples are calculated. The proposed method can be easily implemented and integrated in various lensless imaging techniques for on-chip polarimetric imaging.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.