Punicalagin is cytotoxic to human colon cancer cells by modulating cell proliferation, apoptosis, and invasion.

Ding-Ping Sun, Hsuan-Yi Huang, Chia-Lin Chou, Li-Chin Cheng, Wen-Ching Wang, Yu-Feng Tian, Chia-Lang Fang, Kai-Yuan Lin
{"title":"Punicalagin is cytotoxic to human colon cancer cells by modulating cell proliferation, apoptosis, and invasion.","authors":"Ding-Ping Sun, Hsuan-Yi Huang, Chia-Lin Chou, Li-Chin Cheng, Wen-Ching Wang, Yu-Feng Tian, Chia-Lang Fang, Kai-Yuan Lin","doi":"10.1177/09603271231213979","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> The purpose of this study was to explore the anticancer effect of punicalagin, an abundant bioactive tannin compound isolated from <i>Punica granatum</i> L., on three colon cancer cell lines, namely, HCT 116, HT-29, and LoVo.<b>Research Design:</b> Normal and colon cancer cells were treated with different concentrations of punicalagin for different periods. <b>Data Collection and Analysis:</b> Cell viability was measured with a CCK-8 assay. Programmed cell death and invasion were analyzed using an annexin V and cell death kit and a cell invasion analysis kit. The expression of active caspase-3, MMP-2, MMP-9, Snail, and Slug were measured by Western blot.<b>Results:</b> The results of the cell viability analysis showed that punicalagin was cytotoxic to colon cancer cells, but it was not to normal cells in a dose- and time-dependent manner. Additionally, punicalagin induced apoptosis in colon cancer cells (shown by the cumulative percentage of colorectal cancer cells in early and late apoptosis). It was found that caspase-3 activity increased following punicalagin treatment. Western blot results also showed that punicalagin increased the expression of activated caspase-3. In contrast, punicalagin inhibited the invasion of colon cancer cells. Further, treatment of colon cancer cells with punicalagin suppressed the expression of MMP-2, MMP-9, Snail, and Slug. <b>Conclusions:</b> These results showed that the activation of caspase-3 and the inhibition of MMP-2, MMP-9, Snail and Slug were involved in the effects of punicalagin on colon cancer cells.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271231213979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study was to explore the anticancer effect of punicalagin, an abundant bioactive tannin compound isolated from Punica granatum L., on three colon cancer cell lines, namely, HCT 116, HT-29, and LoVo.Research Design: Normal and colon cancer cells were treated with different concentrations of punicalagin for different periods. Data Collection and Analysis: Cell viability was measured with a CCK-8 assay. Programmed cell death and invasion were analyzed using an annexin V and cell death kit and a cell invasion analysis kit. The expression of active caspase-3, MMP-2, MMP-9, Snail, and Slug were measured by Western blot.Results: The results of the cell viability analysis showed that punicalagin was cytotoxic to colon cancer cells, but it was not to normal cells in a dose- and time-dependent manner. Additionally, punicalagin induced apoptosis in colon cancer cells (shown by the cumulative percentage of colorectal cancer cells in early and late apoptosis). It was found that caspase-3 activity increased following punicalagin treatment. Western blot results also showed that punicalagin increased the expression of activated caspase-3. In contrast, punicalagin inhibited the invasion of colon cancer cells. Further, treatment of colon cancer cells with punicalagin suppressed the expression of MMP-2, MMP-9, Snail, and Slug. Conclusions: These results showed that the activation of caspase-3 and the inhibition of MMP-2, MMP-9, Snail and Slug were involved in the effects of punicalagin on colon cancer cells.

普尼卡金通过调节细胞增殖、凋亡和侵袭,对人结肠癌细胞具有细胞毒性。
目的:研究从石榴中分离得到的丰富的单宁类化合物punicalagin对三种结肠癌细胞株HCT 116、HT-29和LoVo的抗癌作用。数据收集和分析:用CCK-8测定法测定细胞活力。使用膜联蛋白V和细胞死亡试剂盒以及细胞侵袭分析试剂盒分析程序性细胞死亡和侵袭。Western印迹法检测活性胱天蛋白酶-3、MMP-2、MMP-9、Snail和Slug的表达。结果:细胞活力分析结果表明,punicalagin对结肠癌癌症细胞具有细胞毒性,但在剂量和时间依赖性方面对正常细胞不具有细胞毒性。此外,punicalagin诱导结肠癌癌症细胞凋亡(通过结直肠癌癌症细胞在早期和晚期凋亡中的累积百分比显示)。研究发现,punicalagin处理后胱天蛋白酶-3活性增加。Western blot结果还显示,punicalagin增加了活化的胱天蛋白酶-3的表达。相反,punicalagin抑制结肠癌癌症细胞的侵袭。此外,用punicalagin治疗结肠癌癌症细胞抑制了MMP-2、MMP-9、Snail和Slug的表达。结论:punicalagin对结肠癌癌症细胞的作用与胱天蛋白酶-3的激活及对MMP-2、MMP-9、Snail和Slug的抑制有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信