Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-09-01 Epub Date: 2023-11-05 DOI:10.1007/s00497-023-00484-5
Rasha Althiab-Almasaud, Eve Teyssier, Christian Chervin, Mark A Johnson, Jean-Claude Mollet
{"title":"Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement.","authors":"Rasha Althiab-Almasaud, Eve Teyssier, Christian Chervin, Mark A Johnson, Jean-Claude Mollet","doi":"10.1007/s00497-023-00484-5","DOIUrl":null,"url":null,"abstract":"<p><p>Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-023-00484-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.

Abstract Image

被子植物花粉的活力、寿命和功能:关键驱动因素和改进前景。
花粉粒是植物有性繁殖的核心,其生存能力和寿命/储存对植物生理学、生态学、植物育种和许多植物产品行业至关重要。我们的目标是介绍评估花粉活力/寿命的进展,以及我们对决定花粉性能的内在和环境因素的理解的最新进展:花粉粒储存、发芽、产生花粉管和使胚珠受精的能力。我们回顾了目前测量花粉活力的方法,着眼于推进基础研究和生物技术应用。重要的是,我们回顾了花粉/柱头发育的基本方面、花粉分子组成以及细胞内和细胞间信号系统如何与环境相互作用以确定花粉性能的最新进展。我们的目标是指出未来研究的关键问题,特别是考虑到气候变化将直接影响花粉的生存能力/寿命。我们发现,花粉的生存能力和寿命对环境条件高度敏感,这些环境条件会影响母体和父系组织之间的复杂相互作用以及花粉内部的生理事件。由于花粉活力和寿命是粮食安全和适应气候变化的关键因素,我们强调有必要开展进一步的基础研究,以更好地了解调节花粉活力的复杂分子机制,并应用研究开发维持或提高花粉活力和寿命的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信