Cesar de la Fuente-Nunez , Angela Cesaro , Robert E.W. Hancock
{"title":"Antibiotic failure: Beyond antimicrobial resistance","authors":"Cesar de la Fuente-Nunez , Angela Cesaro , Robert E.W. Hancock","doi":"10.1016/j.drup.2023.101012","DOIUrl":null,"url":null,"abstract":"<div><p>Despite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.e., antibiotic failure), emphasizing critical factors impacting this under-recognized issue. Explored aspects include biofilm formation and sepsis, as well as the underlying microbiome. Therapeutic strategies beyond antibiotics, are examined to address the dimensions and resolution of antibiotic failure, actively contributing to this persistent but escalating crisis. We discuss the clinical relevance of antibiotic failure beyond resistance, limited availability of therapies, potential of new antibiotics to be ineffective, and the urgent need for novel anti-infectives or host-directed therapies directly addressing antibiotic failure. Particularly noteworthy is multidrug adaptive resistance in biofilms that represent 65 % of infections, due to the lack of approved therapies. Sepsis, responsible for 19.7 % of all deaths (as well as severe COVID-19 deaths), is a further manifestation of this issue, since antibiotics are the primary frontline therapy, and yet 23 % of patients succumb to this condition.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136876462300095X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.e., antibiotic failure), emphasizing critical factors impacting this under-recognized issue. Explored aspects include biofilm formation and sepsis, as well as the underlying microbiome. Therapeutic strategies beyond antibiotics, are examined to address the dimensions and resolution of antibiotic failure, actively contributing to this persistent but escalating crisis. We discuss the clinical relevance of antibiotic failure beyond resistance, limited availability of therapies, potential of new antibiotics to be ineffective, and the urgent need for novel anti-infectives or host-directed therapies directly addressing antibiotic failure. Particularly noteworthy is multidrug adaptive resistance in biofilms that represent 65 % of infections, due to the lack of approved therapies. Sepsis, responsible for 19.7 % of all deaths (as well as severe COVID-19 deaths), is a further manifestation of this issue, since antibiotics are the primary frontline therapy, and yet 23 % of patients succumb to this condition.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research