ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma.

IF 11.5 Q1 HEMATOLOGY
Paola Neri, Benjamin G Barwick, David Jung, Jonathan C Patton, Ranjan Maity, Ines Tagoug, Caleb K Stein, Remi Tilmont, Noemie Leblay, Sungwoo Ahn, Holly Lee, Seth J Welsh, Daniel L Riggs, Nicholas Stong, Erin Flynt, Anjan Thakurta, Jonathan J Keats, Sagar Lonial, P Leif Bergsagel, Lawrence H Boise, Nizar J Bahlis
{"title":"ETV4-Dependent Transcriptional Plasticity Maintains MYC Expression and Results in IMiD Resistance in Multiple Myeloma.","authors":"Paola Neri, Benjamin G Barwick, David Jung, Jonathan C Patton, Ranjan Maity, Ines Tagoug, Caleb K Stein, Remi Tilmont, Noemie Leblay, Sungwoo Ahn, Holly Lee, Seth J Welsh, Daniel L Riggs, Nicholas Stong, Erin Flynt, Anjan Thakurta, Jonathan J Keats, Sagar Lonial, P Leif Bergsagel, Lawrence H Boise, Nizar J Bahlis","doi":"10.1158/2643-3230.BCD-23-0061","DOIUrl":null,"url":null,"abstract":"<p><p>Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance.</p><p><strong>Significance: </strong>We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":" ","pages":"56-73"},"PeriodicalIF":11.5000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-23-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunomodulatory drugs (IMiD) are a backbone therapy for multiple myeloma (MM). Despite their efficacy, most patients develop resistance, and the mechanisms are not fully defined. Here, we show that IMiD responses are directed by IMiD-dependent degradation of IKZF1 and IKZF3 that bind to enhancers necessary to sustain the expression of MYC and other myeloma oncogenes. IMiD treatment universally depleted chromatin-bound IKZF1, but eviction of P300 and BRD4 coactivators only occurred in IMiD-sensitive cells. IKZF1-bound enhancers overlapped other transcription factor binding motifs, including ETV4. Chromatin immunoprecipitation sequencing showed that ETV4 bound to the same enhancers as IKZF1, and ETV4 CRISPR/Cas9-mediated ablation resulted in sensitization of IMiD-resistant MM. ETV4 expression is associated with IMiD resistance in cell lines, poor prognosis in patients, and is upregulated at relapse. These data indicate that ETV4 alleviates IKZF1 and IKZF3 dependency in MM by maintaining oncogenic enhancer activity and identify transcriptional plasticity as a previously unrecognized mechanism of IMiD resistance.

Significance: We show that IKZF1-bound enhancers are critical for IMiD efficacy and that the factor ETV4 can bind the same enhancers and substitute for IKZF1 and mediate IMiD resistance by maintaining MYC and other oncogenes. These data implicate transcription factor redundancy as a previously unrecognized mode of IMiD resistance in MM. See related article by Welsh, Barwick, et al., p. 34. See related commentary by Yun and Cleveland, p. 5. This article is featured in Selected Articles from This Issue, p. 4.

ETV4依赖性转录可塑性维持多发性骨髓瘤中MYC的表达并导致IMiD耐药性。
免疫调节药物(IMiDs)是治疗多发性骨髓瘤(MM)的主干疗法。尽管它们有疗效,但大多数患者都会产生耐药性,而且其机制尚未完全确定。在这里,我们发现IMiD反应是由IKZF1和IKZF3的IMiD依赖性降解所引导的,IKZF1与IKZF3与维持MYC和其他骨髓瘤癌基因表达所必需的增强子结合。IMiD处理普遍耗尽了染色质结合的IKZF1,但P300和BRD4共激活剂的驱逐仅发生在IMiD敏感细胞中。IKZF1结合的增强子与其他转录因子结合基序重叠,包括ETV4。ChIP-seq显示,ETV4与IKZF1相同的增强子结合,ETV4 CRISPR/Cas9介导的消融导致IMiD耐药性MM的增敏。ETV4的表达与细胞系中的IMiD耐药性、患者的不良预后以及复发时的上调有关。这些数据表明,ETV4通过维持致癌增强子活性来减轻MM中的IKZF1和IKZF3依赖性,并将转录可塑性确定为先前未认识的IMiD抗性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
1.80%
发文量
139
期刊介绍: The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes. The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence. Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信