3D Spheroids Facilitate Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells via p300-Mediated H3K56 Acetylation.
Yanrong Yu, Haina Huang, Junsong Ye, Yumei Li, Renjian Xie, Liping Zeng, Yushan Huang, Tai Zeng, Dan Luo, Jianing Zhong, Weijie Peng
{"title":"3D Spheroids Facilitate Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Hepatocyte-Like Cells via p300-Mediated H3K56 Acetylation.","authors":"Yanrong Yu, Haina Huang, Junsong Ye, Yumei Li, Renjian Xie, Liping Zeng, Yushan Huang, Tai Zeng, Dan Luo, Jianing Zhong, Weijie Peng","doi":"10.1093/stcltm/szad076","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocyte-like cells (HLCs) that are differentiated from mesenchymal stem cells (MSCs) provide a valuable resource for drug screening and cell-based regeneration therapy. Differentiating HLCs into 3D spheroids enhances their phenotypes and functions. However, the molecular mechanisms underlying MSCs hepatogenic differentiation are not fully understood. In this study, we generated HLCs from human adipose-derived mesenchymal stem cells (hADMSCs) in both 2D and 3D cultures. We performed an acetyl-proteomics assay on the HLCs derived from both 2D and 3D differentiation and identified a differential change in H3K56 acetylation between the 2 differentiated cells. Our findings revealed that 3D differentiation activated ALB gene transcription by increasing the acetylation level of H3K56, thereby enhancing the phenotypes and functions of HLCs and further promoting their maturation. Notably, inhibiting p300 reduced the acetylation level of H3K56 during hepatogenic differentiation, leading to decreased phenotypes and functions of HLCs, whereas activation of p300 promoted hepatogenic differentiation, suggesting that p300 plays a critical role in this process. In summary, our study demonstrates a potential mechanism through which 3D spheroids differentiation facilitates hADMSCs differentiation into HLCs by promoting p300-mediated H3K56 acetylation, which could have significant clinical applications in liver regeneration and disease modeling.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"151-165"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szad076","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocyte-like cells (HLCs) that are differentiated from mesenchymal stem cells (MSCs) provide a valuable resource for drug screening and cell-based regeneration therapy. Differentiating HLCs into 3D spheroids enhances their phenotypes and functions. However, the molecular mechanisms underlying MSCs hepatogenic differentiation are not fully understood. In this study, we generated HLCs from human adipose-derived mesenchymal stem cells (hADMSCs) in both 2D and 3D cultures. We performed an acetyl-proteomics assay on the HLCs derived from both 2D and 3D differentiation and identified a differential change in H3K56 acetylation between the 2 differentiated cells. Our findings revealed that 3D differentiation activated ALB gene transcription by increasing the acetylation level of H3K56, thereby enhancing the phenotypes and functions of HLCs and further promoting their maturation. Notably, inhibiting p300 reduced the acetylation level of H3K56 during hepatogenic differentiation, leading to decreased phenotypes and functions of HLCs, whereas activation of p300 promoted hepatogenic differentiation, suggesting that p300 plays a critical role in this process. In summary, our study demonstrates a potential mechanism through which 3D spheroids differentiation facilitates hADMSCs differentiation into HLCs by promoting p300-mediated H3K56 acetylation, which could have significant clinical applications in liver regeneration and disease modeling.
期刊介绍:
STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal.
STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes.
The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.