Michal Alexovič, Csilla Uličná, Ján Sabo, Katarina Davalieva
{"title":"Human peripheral blood mononuclear cells as a valuable source of disease-related biomarkers: Evidence from comparative proteomics studies.","authors":"Michal Alexovič, Csilla Uličná, Ján Sabo, Katarina Davalieva","doi":"10.1002/prca.202300072","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The discovery of specific and sensitive disease-associated biomarkers for early diagnostic purposes of many diseases is still highly challenging due to various complex molecular mechanisms triggered, high variability of disease-related interactions, and an overlap of manifestations among diseases. Human peripheral blood mononuclear cells (PBMCs) contain protein signatures corresponding to essential immunological interplay. Certain diseases stimulate PBMCs and contribute towards modulation of their proteome which can be effectively identified and evaluated via the comparative proteomics approach.</p><p><strong>Experimental design: </strong>In this review, we made a detailed survey of the PBMCS-derived protein biomarker candidates for a variety of diseases, published in the last 15 years. Articles were preselected to include only comparative proteomics studies.</p><p><strong>Results: </strong>PBMC-derived biomarkers were investigated for cancer, glomerular, neurodegenerative/neurodevelopmental, psychiatric, chronic inflammatory, autoimmune, endocrinal, infectious, and other diseases. A detailed review of these studies encompassed the proteomics platforms, proposed candidate biomarkers, their immune cell type specificity, and potential clinical application.</p><p><strong>Conclusions: </strong>Overall, PBMCs have shown a solid potential in giving early diagnostic and prognostic biomarkers for many diseases. The future of PBMC biomarker research should reveal its full potential through well-designed comparative studies and extensive testing of the most promising protein biomarkers identified so far.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.202300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The discovery of specific and sensitive disease-associated biomarkers for early diagnostic purposes of many diseases is still highly challenging due to various complex molecular mechanisms triggered, high variability of disease-related interactions, and an overlap of manifestations among diseases. Human peripheral blood mononuclear cells (PBMCs) contain protein signatures corresponding to essential immunological interplay. Certain diseases stimulate PBMCs and contribute towards modulation of their proteome which can be effectively identified and evaluated via the comparative proteomics approach.
Experimental design: In this review, we made a detailed survey of the PBMCS-derived protein biomarker candidates for a variety of diseases, published in the last 15 years. Articles were preselected to include only comparative proteomics studies.
Results: PBMC-derived biomarkers were investigated for cancer, glomerular, neurodegenerative/neurodevelopmental, psychiatric, chronic inflammatory, autoimmune, endocrinal, infectious, and other diseases. A detailed review of these studies encompassed the proteomics platforms, proposed candidate biomarkers, their immune cell type specificity, and potential clinical application.
Conclusions: Overall, PBMCs have shown a solid potential in giving early diagnostic and prognostic biomarkers for many diseases. The future of PBMC biomarker research should reveal its full potential through well-designed comparative studies and extensive testing of the most promising protein biomarkers identified so far.