Florian Wurm, Margit Lenninger, Astrid Mayr, Cornelia Lass-Floerl, Tung Pham, Thomas Bechtold
{"title":"Imperfect cross-linking of xanthan for pH-responsive bio-based composite moist wound dressings by stencil printing.","authors":"Florian Wurm, Margit Lenninger, Astrid Mayr, Cornelia Lass-Floerl, Tung Pham, Thomas Bechtold","doi":"10.1177/08853282231210712","DOIUrl":null,"url":null,"abstract":"<p><p>The work addresses the use of bio-based and -degradable materials for the production of a moist, adaptive and anti-microbial wound dressing. The dressing is targeted to exhibit a pH-dependent active agent release. Xanthan hydrogel structures are coated on cellulose fabrics via stencil printing and subsequently cross-linked using glyoxal. By alteration of the cross-linker content from 1 to 6% by mass, the hydrogel elasticity can be tuned within a range of 2-16 kPa storage modulus. Increasing initial glyoxal concentrations also result in higher amounts of glyoxal release. Glyoxal, an anti-microbial agent with approval in veterinary medicine, is mostly released upon wound application supporting infection management. As wound simulation, normal saline, as pH 5 and pH 8 buffer solutions, were used. The release profile and magnitude of approx. 65%-90% glyoxal is pH-dependent. Increased release rates of glyoxal are present in pH 8 fluids, which mostly base on faster hydrogel swelling. Higher total glyoxal release is present in pH 5 fluid and normal saline after 3 days. Accordingly, a pH-dependent release profile was encountered. As glyoxal attacks any cell unselectively, it is expected to be effective against antibiotic resistant bacteria. By stencil printing the dressing size can be adjusted to minimize healthy glyoxal tissue exposure.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"670-680"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282231210712","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The work addresses the use of bio-based and -degradable materials for the production of a moist, adaptive and anti-microbial wound dressing. The dressing is targeted to exhibit a pH-dependent active agent release. Xanthan hydrogel structures are coated on cellulose fabrics via stencil printing and subsequently cross-linked using glyoxal. By alteration of the cross-linker content from 1 to 6% by mass, the hydrogel elasticity can be tuned within a range of 2-16 kPa storage modulus. Increasing initial glyoxal concentrations also result in higher amounts of glyoxal release. Glyoxal, an anti-microbial agent with approval in veterinary medicine, is mostly released upon wound application supporting infection management. As wound simulation, normal saline, as pH 5 and pH 8 buffer solutions, were used. The release profile and magnitude of approx. 65%-90% glyoxal is pH-dependent. Increased release rates of glyoxal are present in pH 8 fluids, which mostly base on faster hydrogel swelling. Higher total glyoxal release is present in pH 5 fluid and normal saline after 3 days. Accordingly, a pH-dependent release profile was encountered. As glyoxal attacks any cell unselectively, it is expected to be effective against antibiotic resistant bacteria. By stencil printing the dressing size can be adjusted to minimize healthy glyoxal tissue exposure.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.