The prevalence of killer yeasts and double-stranded RNAs in the budding yeast Saccharomyces cerevisiae.

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Angela M Crabtree, Nathan T Taggart, Mark D Lee, Josie M Boyer, Paul A Rowley
{"title":"The prevalence of killer yeasts and double-stranded RNAs in the budding yeast Saccharomyces cerevisiae.","authors":"Angela M Crabtree, Nathan T Taggart, Mark D Lee, Josie M Boyer, Paul A Rowley","doi":"10.1093/femsyr/foad046","DOIUrl":null,"url":null,"abstract":"<p><p>Killer toxins are antifungal proteins produced by many species of \"killer\" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Killer toxins are antifungal proteins produced by many species of "killer" yeasts, including the brewer's and baker's yeast Saccharomyces cerevisiae. Screening 1270 strains of S. cerevisiae for killer toxin production found that 50% are killer yeasts, with a higher prevalence of yeasts isolated from human clinical samples and winemaking processes. Since many killer toxins are encoded by satellite double-stranded RNAs (dsRNAs) associated with mycoviruses, S. cerevisiae strains were also assayed for the presence of dsRNAs. This screen identified that 51% of strains contained dsRNAs from the mycovirus families Totiviridae and Partitiviridae, as well as satellite dsRNAs. Killer toxin production was correlated with the presence of satellite dsRNAs but not mycoviruses. However, in most killer yeasts, whole genome analysis identified the killer toxin gene KHS1 as significantly associated with killer toxin production. Most killer yeasts had unique spectrums of antifungal activities compared to canonical killer toxins, and sequence analysis identified mutations that altered their antifungal activities. The prevalence of mycoviruses and killer toxins in S. cerevisiae is important because of their known impact on yeast fitness, with implications for academic research and industrial application of this yeast species.

酿酒酵母芽中杀伤性酵母和双链RNA的普遍性。
杀手毒素是由许多种类的“杀手”酵母产生的抗真菌蛋白,包括酿酒酵母和面包酵母酿酒酵母。筛选1270株酿酒酵母生产杀伤性毒素,发现50%是杀伤性酵母,从人类临床样本和酿酒过程中分离的酵母患病率更高。由于许多杀伤毒素是由与分枝杆菌病毒相关的卫星dsRNA编码的,酿酒酵母菌株也被检测dsRNA的存在。该筛选发现,51%的菌株含有来自真菌病毒科Totiviridae和Partitivridae的dsRNA,以及卫星dsRNA。杀伤毒素的产生与卫星dsRNA的存在相关,但与真菌病毒无关。然而,在大多数杀伤酵母中,全基因组分析确定杀伤毒素基因KHS1与杀伤毒素的产生显著相关。与典型的杀伤毒素相比,大多数杀伤酵母具有独特的抗真菌活性谱,序列分析确定了改变杀伤毒素抗真菌活性的突变。酿酒酵母中真菌病毒和杀手毒素的流行是重要的,因为它们对酵母适应性的影响是已知的,这对该酵母物种的学术研究和工业应用具有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信