D D Zhdanov, Yu Yu Ivin, A N Shishparenok, S V Kraevskiy, S L Kanashenko, L E Agafonova, V V Shumyantseva, O V Gnedenko, A N Pinyaeva, A A Kovpak, A A Ishmukhametov, A I Archakov
{"title":"Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example.","authors":"D D Zhdanov, Yu Yu Ivin, A N Shishparenok, S V Kraevskiy, S L Kanashenko, L E Agafonova, V V Shumyantseva, O V Gnedenko, A N Pinyaeva, A A Kovpak, A A Ishmukhametov, A I Archakov","doi":"10.18097/PBMC20236905253","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"69 5","pages":"253-280"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20236905253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).