Molecular Crowding: Physiologic Sensing and Control.

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-11-06 DOI:10.1146/annurev-physiol-042222-025920
Arohan R Subramanya, Cary R Boyd-Shiwarski
{"title":"Molecular Crowding: Physiologic Sensing and Control.","authors":"Arohan R Subramanya, Cary R Boyd-Shiwarski","doi":"10.1146/annurev-physiol-042222-025920","DOIUrl":null,"url":null,"abstract":"<p><p>The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":"429-452"},"PeriodicalIF":15.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-042222-025920","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cytoplasm is densely packed with molecules that contribute to its nonideal behavior. Cytosolic crowding influences chemical reaction rates, intracellular water mobility, and macromolecular complex formation. Overcrowding is potentially catastrophic; to counteract this problem, cells have evolved acute and chronic homeostatic mechanisms that optimize cellular crowdedness. Here, we provide a physiology-focused overview of molecular crowding, highlighting contemporary advances in our understanding of its sensing and control. Long hypothesized as a form of crowding-induced microcompartmentation, phase separation allows cells to detect and respond to intracellular crowding through the action of biomolecular condensates, as indicated by recent studies. Growing evidence indicates that crowding is closely tied to cell size and fluid volume, homeostatic responses to physical compression and desiccation, tissue architecture, circadian rhythm, aging, transepithelial transport, and total body electrolyte and water balance. Thus, molecular crowding is a fundamental physiologic parameter that impacts diverse functions extending from molecule to organism.

分子拥挤:生理传感与控制。
细胞质中密密麻麻地堆积着分子,这些分子有助于它的非理想行为。胞质拥挤影响化学反应速率、细胞内水的流动性和大分子复合物的形成。过度拥挤可能是灾难性的;为了解决这个问题,细胞已经进化出急性和慢性稳态机制,以优化细胞拥挤。在这里,我们对分子拥挤进行了以生理学为重点的概述,强调了我们对其感知和控制的理解的当代进展。长期以来,相分离被认为是拥挤诱导的微室形成的一种形式,正如最近的研究所表明的那样,相分离允许细胞通过生物分子缩合物的作用来检测细胞内拥挤并对其做出反应。越来越多的证据表明,拥挤与细胞大小和液体体积、对物理压缩和干燥的稳态反应、组织结构、昼夜节律、衰老、跨上皮转运以及全身电解质和水平衡密切相关。因此,分子拥挤是影响从分子到生物体的各种功能的基本生理参数。《生理学年度评论》第86卷预计最终在线出版日期为2024年2月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信