Bangmin Zhang, Chunhua Tang, Ping Yang and Jingsheng Chen
{"title":"Tuning Rashba–Dresselhaus effect with ferroelectric polarization at asymmetric heterostructural interface†","authors":"Bangmin Zhang, Chunhua Tang, Ping Yang and Jingsheng Chen","doi":"10.1039/D3MH00635B","DOIUrl":null,"url":null,"abstract":"<p >The spin–orbit interaction (SOI) plays an essential role in materials properties, and controlling its intensity has great potential in the design of materials. In this work, asymmetric [(La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>MnO<small><sub>3</sub></small>)<small><sub>8</sub></small>/(BaTiO<small><sub>3</sub></small>)<small><sub>t</sub></small>/(SrTiO<small><sub>3</sub></small>)<small><sub>2</sub></small>]<small><sub>8</sub></small> superlattices were fabricated on (001) SrTiO<small><sub>3</sub></small> substrate with SrO or TiO<small><sub>2</sub></small> termination, labelled as SrO-SL and TiO<small><sub>2</sub></small>-SL, respectively. The in-plane angular magnetoresistance of the superlattices shows a combination of two- and four-fold symmetry components. The coefficient of two-fold symmetry component has opposite sign with current <em>I</em> along [100] and [110] directions for TiO<small><sub>2</sub></small>-SL, while it has the same sign for SrO-SL. Detailed study shows that the asymmetric cation inter-mixing and ferroelectricity-modulated electronic charge transfer induce asymmetric electronic potential for SrO-SL with dominating Rashba SOI, and symmetric electronic potential for TiO<small><sub>2</sub></small>-SL with dominating Dresselhaus SOI induced by BaTiO<small><sub>3</sub></small>. This work shows that the Rashba and Dresselhaus SOIs are sensitive to the ferroelectric polarization in the asymmetric structure.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 1","pages":" 262-270"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d3mh00635b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The spin–orbit interaction (SOI) plays an essential role in materials properties, and controlling its intensity has great potential in the design of materials. In this work, asymmetric [(La0.7Sr0.3MnO3)8/(BaTiO3)t/(SrTiO3)2]8 superlattices were fabricated on (001) SrTiO3 substrate with SrO or TiO2 termination, labelled as SrO-SL and TiO2-SL, respectively. The in-plane angular magnetoresistance of the superlattices shows a combination of two- and four-fold symmetry components. The coefficient of two-fold symmetry component has opposite sign with current I along [100] and [110] directions for TiO2-SL, while it has the same sign for SrO-SL. Detailed study shows that the asymmetric cation inter-mixing and ferroelectricity-modulated electronic charge transfer induce asymmetric electronic potential for SrO-SL with dominating Rashba SOI, and symmetric electronic potential for TiO2-SL with dominating Dresselhaus SOI induced by BaTiO3. This work shows that the Rashba and Dresselhaus SOIs are sensitive to the ferroelectric polarization in the asymmetric structure.