Suntharalingam Sharmilan , Henrik Stang , Alexander Michel
{"title":"A multi-species reactive transport model based on gas-ion-solid phase interaction for the carbonation of cement-based materials","authors":"Suntharalingam Sharmilan , Henrik Stang , Alexander Michel","doi":"10.1016/j.cemconres.2023.107349","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a reactive transport modelling framework for understanding carbonation processes through pore solution composition, phase assemblage changes in cement-based materials, and pore solution composition changes on steel corrosion. The study emphasizes the significance of considering pore structure changes on mass transport and utilizing a surface complexation model for predicting changes in pore solution composition and comprehending its influence on steel corrosion. A clear enrichment in sodium and potassium content in carbonated regions is observed upon carbonation, which leads to a decrease in alkali concentration in the pore solution, and alkali ions are transported toward the carbonated zone. Simultaneously, the opposite behaviour is observed for both the sulphur and chloride content. The increase in the concentration of sulphur and chloride in the pore solution was observed upon the decomposition of the solid phase. Calcium ions are transported to the carbonated zone, further increasing calcite formation near the exposed surface.</p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"175 ","pages":"Article 107349"},"PeriodicalIF":10.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008884623002636/pdfft?md5=7816472bd1888e48eb853db5922303b1&pid=1-s2.0-S0008884623002636-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884623002636","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a reactive transport modelling framework for understanding carbonation processes through pore solution composition, phase assemblage changes in cement-based materials, and pore solution composition changes on steel corrosion. The study emphasizes the significance of considering pore structure changes on mass transport and utilizing a surface complexation model for predicting changes in pore solution composition and comprehending its influence on steel corrosion. A clear enrichment in sodium and potassium content in carbonated regions is observed upon carbonation, which leads to a decrease in alkali concentration in the pore solution, and alkali ions are transported toward the carbonated zone. Simultaneously, the opposite behaviour is observed for both the sulphur and chloride content. The increase in the concentration of sulphur and chloride in the pore solution was observed upon the decomposition of the solid phase. Calcium ions are transported to the carbonated zone, further increasing calcite formation near the exposed surface.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.