IgLM: Infilling language modeling for antibody sequence design.

IF 7.7
Cell systems Pub Date : 2023-11-15 Epub Date: 2023-10-30 DOI:10.1016/j.cels.2023.10.001
Richard W Shuai, Jeffrey A Ruffolo, Jeffrey J Gray
{"title":"IgLM: Infilling language modeling for antibody sequence design.","authors":"Richard W Shuai, Jeffrey A Ruffolo, Jeffrey J Gray","doi":"10.1016/j.cels.2023.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>Discovery and optimization of monoclonal antibodies for therapeutic applications relies on large sequence libraries but is hindered by developability issues such as low solubility, high aggregation, and high immunogenicity. Generative language models, trained on millions of protein sequences, are a powerful tool for the on-demand generation of realistic, diverse sequences. We present the Immunoglobulin Language Model (IgLM), a deep generative language model for creating synthetic antibody libraries. Compared with prior methods that leverage unidirectional context for sequence generation, IgLM formulates antibody design based on text-infilling in natural language, allowing it to re-design variable-length spans within antibody sequences using bidirectional context. We trained IgLM on 558 million (M) antibody heavy- and light-chain variable sequences, conditioning on each sequence's chain type and species of origin. We demonstrate that IgLM can generate full-length antibody sequences from a variety of species and its infilling formulation allows it to generate infilled complementarity-determining region (CDR) loop libraries with improved in silico developability profiles. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"979-989.e4"},"PeriodicalIF":7.7000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.10.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery and optimization of monoclonal antibodies for therapeutic applications relies on large sequence libraries but is hindered by developability issues such as low solubility, high aggregation, and high immunogenicity. Generative language models, trained on millions of protein sequences, are a powerful tool for the on-demand generation of realistic, diverse sequences. We present the Immunoglobulin Language Model (IgLM), a deep generative language model for creating synthetic antibody libraries. Compared with prior methods that leverage unidirectional context for sequence generation, IgLM formulates antibody design based on text-infilling in natural language, allowing it to re-design variable-length spans within antibody sequences using bidirectional context. We trained IgLM on 558 million (M) antibody heavy- and light-chain variable sequences, conditioning on each sequence's chain type and species of origin. We demonstrate that IgLM can generate full-length antibody sequences from a variety of species and its infilling formulation allows it to generate infilled complementarity-determining region (CDR) loop libraries with improved in silico developability profiles. A record of this paper's transparent peer review process is included in the supplemental information.

IgLM:抗体序列设计的填充语言建模。
用于治疗应用的单克隆抗体的发现和优化依赖于大序列库,但受到低溶解度、高聚集性和高免疫原性等可开发性问题的阻碍。基于数百万个蛋白质序列训练的生成语言模型是按需生成真实多样序列的强大工具。我们提出了免疫球蛋白语言模型(IgLM),这是一种用于创建合成抗体库的深度生成语言模型。与先前利用单向上下文生成序列的方法相比,IgLM基于自然语言中的文本填充来制定抗体设计,使其能够使用双向上下文重新设计抗体序列中的可变长度跨度。我们在5.58亿(M)抗体重链和轻链可变序列上训练IgLM,以每个序列的链类型和来源物种为条件。我们证明,IgLM可以从多种物种中产生全长抗体序列,其填充制剂使其能够产生具有改进的计算机可开发性的填充互补决定区(CDR)环文库。本文的透明同行评审过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信