Yashar A Behnam, Ahilan Anantha Krishnan, Hayden Wilson, Chadd W Clary
{"title":"Simultaneous Evaluation of Tibiofemoral and Patellofemoral Mechanics in Total Knee Arthroplasty: A Combined Experimental and Computational Approach.","authors":"Yashar A Behnam, Ahilan Anantha Krishnan, Hayden Wilson, Chadd W Clary","doi":"10.1115/1.4063950","DOIUrl":null,"url":null,"abstract":"<p><p>Contemporary total knee arthroplasty (TKA) has not fully restored natural patellofemoral (P-F) mechanics across the patient population. Previous experimental simulations have been limited in their ability to create dynamic, unconstrained, muscle-driven P-F articulation while simultaneously controlling tibiofemoral (T-F) contact mechanics. The purpose of this study was to develop a novel experimental simulation and validate a corresponding finite element model to evaluate T-F and P-F mechanics. A commercially available wear simulator was retrofitted with custom fixturing to evaluate whole-knee TKA mechanics with varying patella heights during a simulated deep knee bend. A corresponding dynamic finite element model was developed to validate kinematic and kinetic predictions against experimental measurements. Patella alta reduced P-F reaction forces in early and midflexion, corresponding with an increase in T-F forces that indicated an increase in extensor mechanism efficiency. Due to reduced wrapping of the extensor mechanism in deeper flexion for the alta condition, peak P-F forces in flexion increased from 101% to 135% of the applied quadriceps load for the baja and alta conditions, respectively. Strong agreement was observed between the experiment and model predictions with root-mean-square errors (RMSE) for P-F kinematics ranging from 0.8 deg to 3.3 deg and 0.7 mm to 1.4 mm. RMSE for P-F forces ranged from 7.4 N to 53.6 N. By simultaneously controlling dynamic, physiological loading of the T-F and P-F joint, this novel experimental simulation and validated model will be a valuable tool for investigation of future TKA designs and surgical techniques.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063950","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary total knee arthroplasty (TKA) has not fully restored natural patellofemoral (P-F) mechanics across the patient population. Previous experimental simulations have been limited in their ability to create dynamic, unconstrained, muscle-driven P-F articulation while simultaneously controlling tibiofemoral (T-F) contact mechanics. The purpose of this study was to develop a novel experimental simulation and validate a corresponding finite element model to evaluate T-F and P-F mechanics. A commercially available wear simulator was retrofitted with custom fixturing to evaluate whole-knee TKA mechanics with varying patella heights during a simulated deep knee bend. A corresponding dynamic finite element model was developed to validate kinematic and kinetic predictions against experimental measurements. Patella alta reduced P-F reaction forces in early and midflexion, corresponding with an increase in T-F forces that indicated an increase in extensor mechanism efficiency. Due to reduced wrapping of the extensor mechanism in deeper flexion for the alta condition, peak P-F forces in flexion increased from 101% to 135% of the applied quadriceps load for the baja and alta conditions, respectively. Strong agreement was observed between the experiment and model predictions with root-mean-square errors (RMSE) for P-F kinematics ranging from 0.8 deg to 3.3 deg and 0.7 mm to 1.4 mm. RMSE for P-F forces ranged from 7.4 N to 53.6 N. By simultaneously controlling dynamic, physiological loading of the T-F and P-F joint, this novel experimental simulation and validated model will be a valuable tool for investigation of future TKA designs and surgical techniques.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.