Ethanol Extract of Anacyclus pyrethrum Root Ameliorates Cough-Variant Asthma Through the TLR4/NF-κB Pathway and Wnt/β-Catenin Pathway.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Biotechnology Pub Date : 2024-11-01 Epub Date: 2023-11-01 DOI:10.1007/s12033-023-00935-4
Jun Zheng, Hao Yang, Changjiang Liu, Rui Zhang, Nadire Yibulayimu, Xiaoyue Jin
{"title":"Ethanol Extract of Anacyclus pyrethrum Root Ameliorates Cough-Variant Asthma Through the TLR4/NF-κB Pathway and Wnt/β-Catenin Pathway.","authors":"Jun Zheng, Hao Yang, Changjiang Liu, Rui Zhang, Nadire Yibulayimu, Xiaoyue Jin","doi":"10.1007/s12033-023-00935-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cough-variant asthma (CVA) has been recognized as the initial stage or pre-asthmatic state of classic asthma, which characterized by cough as the primary clinical presentation. Inhaled glucocorticoids, oral leukotriene receptor antagonists and antihistamines are the clinical treatments, but their efficacy is not satisfactory. Some traditional Chinese medicine (TCM) has been reported to have certain advantages in the treatment of CVA, but the underlying molecular mechanisms are still unclear. Recent research has indicated that Anacyclus pyerhrurm (L) DC. is commonly used in the treatment of human diseases. The aim of our study was to evaluate the anti-inflammatory and anti-oxidative mechanism of the ethanol extract of Anacyclus pyrethrum (L) DC. root (EEAP) in a model of CVA. In our study, we indicated that EEAP ameliorated CVA by reducing cough frequency and inflammatory effect and oxidative stress in an in vivo rat model of CVA. In addition, EEAP ameliorated LPS-induced cell apoptosis and regulated inflammatory effect and oxidative stress in vitro. Mechanistically, EEAP exerted anti-inflammatory effects through regulating the TLR4/NF-κB pathway and Wnt/β-catenin pathway, and overexpressing TLR4 or activating the Wnt/β-catenin pathway by SKL2001 reversed EEAP-exerted effects in LPS-exposed BEAS-2B and 16-HBE cells. In conclusion, EEAP attenuated cell apoptosis, inflammation and oxidative stress through restraining the TLR4/NF-κB pathway and Wnt/β-catenin pathway in CVA, which shown that EEAP might be a promising therapeutic agent for CVA and may provide a theoretical basis for clinical treatment with CVA patients.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3274-3284"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00935-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cough-variant asthma (CVA) has been recognized as the initial stage or pre-asthmatic state of classic asthma, which characterized by cough as the primary clinical presentation. Inhaled glucocorticoids, oral leukotriene receptor antagonists and antihistamines are the clinical treatments, but their efficacy is not satisfactory. Some traditional Chinese medicine (TCM) has been reported to have certain advantages in the treatment of CVA, but the underlying molecular mechanisms are still unclear. Recent research has indicated that Anacyclus pyerhrurm (L) DC. is commonly used in the treatment of human diseases. The aim of our study was to evaluate the anti-inflammatory and anti-oxidative mechanism of the ethanol extract of Anacyclus pyrethrum (L) DC. root (EEAP) in a model of CVA. In our study, we indicated that EEAP ameliorated CVA by reducing cough frequency and inflammatory effect and oxidative stress in an in vivo rat model of CVA. In addition, EEAP ameliorated LPS-induced cell apoptosis and regulated inflammatory effect and oxidative stress in vitro. Mechanistically, EEAP exerted anti-inflammatory effects through regulating the TLR4/NF-κB pathway and Wnt/β-catenin pathway, and overexpressing TLR4 or activating the Wnt/β-catenin pathway by SKL2001 reversed EEAP-exerted effects in LPS-exposed BEAS-2B and 16-HBE cells. In conclusion, EEAP attenuated cell apoptosis, inflammation and oxidative stress through restraining the TLR4/NF-κB pathway and Wnt/β-catenin pathway in CVA, which shown that EEAP might be a promising therapeutic agent for CVA and may provide a theoretical basis for clinical treatment with CVA patients.

Abstract Image

拟除虫菊根乙醇提取物通过TLR4/NF-κB途径和Wnt/β-儿茶素途径改善咳嗽变异性哮喘。
咳嗽变异性哮喘(CVA)已被公认为典型哮喘的初始阶段或哮喘前期状态,其特征是咳嗽是主要的临床表现。吸入性糖皮质激素、口服白三烯受体拮抗剂和抗组胺药是临床治疗方法,但疗效不理想。据报道,一些中药在治疗CVA方面具有一定的优势,但其潜在的分子机制尚不清楚。近年来的研究表明,扁环虫(L)DC。通常用于治疗人类疾病。本研究的目的是评价拟除虫菊乙醇提取物的抗炎和抗氧化机制。根(EEAP)。在我们的研究中,我们指出,在CVA的体内大鼠模型中,EEAP通过降低咳嗽频率、炎症作用和氧化应激来改善CVA。此外,EEAP在体外改善LPS诱导的细胞凋亡,调节炎症作用和氧化应激。从机制上讲,EEAP通过调节TLR4/NF-κB通路和Wnt/β-catenin通路发挥抗炎作用,SKL2001过表达TLR4或激活Wnt/α-catenin途径逆转了EEAP在LPS暴露的BEAS-2B和16-HBE细胞中的作用。总之,EEAP通过抑制CVA中的TLR4/NF-κB通路和Wnt/β-catenin通路来减轻细胞凋亡、炎症和氧化应激,这表明EEAP可能是一种很有前途的CVA治疗剂,并可能为CVA患者的临床治疗提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信