{"title":"Artificial intelligence in serum protein electrophoresis: history, state of the art, and perspective.","authors":"He He, Lingfeng Wang, Xia Wang, Mei Zhang","doi":"10.1080/10408363.2023.2274325","DOIUrl":null,"url":null,"abstract":"<p><p>Serum protein electrophoresis (SPEP) is a valuable laboratory test that separates proteins from the blood based on their electrical charge and size. The test can detect and analyze various protein abnormalities, and the interpretation of graphic SPEP features plays a crucial role in the diagnosis and monitoring of conditions, such as myeloma. Furthermore, the advancement of artificial intelligence (AI) technology presents an opportunity to enhance the organization and optimization of analytical procedures by streamlining the process and reducing the potential for human error in SPEP analysis, thereby making the process more efficient and reliable. For instance, AI can assist in the identification of protein peaks, the calculation of their relative proportions, and the detection of abnormalities or inconsistencies. This review explores the characteristics and limitations of AI in SPEP, and the role of standardization in improving its clinical utility. It also offers guidance on the rational ordering and interpreting of SPEP results in conjunction with AI. Such integration can effectively reduce the time and resources required for manual analysis while improving the accuracy and consistency of the results.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"226-240"},"PeriodicalIF":6.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in clinical laboratory sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408363.2023.2274325","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Serum protein electrophoresis (SPEP) is a valuable laboratory test that separates proteins from the blood based on their electrical charge and size. The test can detect and analyze various protein abnormalities, and the interpretation of graphic SPEP features plays a crucial role in the diagnosis and monitoring of conditions, such as myeloma. Furthermore, the advancement of artificial intelligence (AI) technology presents an opportunity to enhance the organization and optimization of analytical procedures by streamlining the process and reducing the potential for human error in SPEP analysis, thereby making the process more efficient and reliable. For instance, AI can assist in the identification of protein peaks, the calculation of their relative proportions, and the detection of abnormalities or inconsistencies. This review explores the characteristics and limitations of AI in SPEP, and the role of standardization in improving its clinical utility. It also offers guidance on the rational ordering and interpreting of SPEP results in conjunction with AI. Such integration can effectively reduce the time and resources required for manual analysis while improving the accuracy and consistency of the results.
期刊介绍:
Critical Reviews in Clinical Laboratory Sciences publishes comprehensive and high quality review articles in all areas of clinical laboratory science, including clinical biochemistry, hematology, microbiology, pathology, transfusion medicine, genetics, immunology and molecular diagnostics. The reviews critically evaluate the status of current issues in the selected areas, with a focus on clinical laboratory diagnostics and latest advances. The adjective “critical” implies a balanced synthesis of results and conclusions that are frequently contradictory and controversial.