Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pelin Akcali, Kübra Kelleci, Sevil Ozer
{"title":"Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental.","authors":"Pelin Akcali, Kübra Kelleci, Sevil Ozer","doi":"10.2174/0113892037259122231013153546","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.</p><p><strong>Methods: </strong>In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.</p><p><strong>Results: </strong>It has been found that the simulation results are supported by analytical calculations and experimental results.</p><p><strong>Conclusion: </strong>The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037259122231013153546","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.

Methods: In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.

Results: It has been found that the simulation results are supported by analytical calculations and experimental results.

Conclusion: The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.

用于MITF抗原和D5单克隆抗体的微反杠杆生物传感器的设计与仿真有限元分析和实验。
背景:在过去的几十年里,生物传感器和微机电系统得到了快速的发展和极大的兴趣。诊断、医疗和化学应用的不断进步已在多个平台和工具中得到证明。在本研究中,将用于生物分子分析的微悬臂梁的分析和有限元分析结果与实验分析结果进行了比较。方法:本研究选用黑色素瘤生物标志物MITF抗原和抗MITF抗体(D5)作为生物分子。利用两种分子之间特定的相互作用动力学和分子间结合能力,通过对AFM悬臂梁进行功能化,设计了MEMS型微悬臂梁生物传感器。利用有限元法对悬臂梁微型生物传感器进行了表面功能化。由于MITF-D5之间的相互作用而产生的应力已由悬臂的谐振频率偏差确定。结果:仿真结果得到了分析计算和实验结果的支持。结论:与昂贵和耗时的实验方法相比,模拟研究的结果与实验和数学结果重叠,这一事实使我们能够获得更便宜、更快的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信