CDKN2B-AS1 mediates proliferation and migration of vascular smooth muscle cells induced by insulin.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2023-12-01 Epub Date: 2023-11-01 DOI:10.1007/s00441-023-03836-9
Hao-Jie Jin, Zi-Heng Wu, Bao-Fu Zhang, Jie Deng, Yin-Dong Xu, Xin-Yu Wang, Zheng-Yang Song, Xin-Wu Lu, Wan-Tie Wang, Xiang-Tao Zheng
{"title":"CDKN2B-AS1 mediates proliferation and migration of vascular smooth muscle cells induced by insulin.","authors":"Hao-Jie Jin, Zi-Heng Wu, Bao-Fu Zhang, Jie Deng, Yin-Dong Xu, Xin-Yu Wang, Zheng-Yang Song, Xin-Wu Lu, Wan-Tie Wang, Xiang-Tao Zheng","doi":"10.1007/s00441-023-03836-9","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"455-469"},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03836-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the intimal hyperplasia in type 2 diabetes mellitus (T2DM) patients after percutaneous coronary intervention. We aimed to investigate the role of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in VSMC proliferation and migration, as well as the underlying mechanism. T2DM model mice with carotid balloon injury were used in vivo and mouse aortic vascular smooth muscle cells (MOVAS) stimulated by insulin were used in vitro to assess the role of CDKN2B-AS1 in VSMC proliferation and migration following vascular injury in T2DM state. To investigate cell viability and migration, MTT assay and Transwell assay were conducted. To elucidate the underlying molecular mechanisms, the methylation-specific polymerase chain reaction, RNA immunoprecipitation, RNA-pull down, co-immunoprecipitation, and chromatin immunoprecipitation were performed. In vivo, CDKN2B-AS1 was up-regulated in common carotid artery tissues. In vitro, insulin treatment increased CDKN2B-AS1 level, enhanced MOVAS cell proliferation and migration, while the promoting effect was reversed by CDKN2B-AS1 knockdown. CDKN2B-AS1 forms a complex with enhancer of zeste homolog 2 (EZH2) and DNA methyltransferase (cytosine-5) 1 (DNMT1) to regulate smooth muscle 22 alpha (SM22α) methylation levels. In insulin-stimulated cells, SM22α knockdown abrogated the inhibitory effect of CDKN2B-AS1 knockdown on cell viability and migration. Injection of lentivirus-sh-CDKN2B-AS1 relieved intimal hyperplasia in T2DM mice with carotid balloon injury. Up-regulation of CDKN2B-AS1 induced by insulin promotes cell proliferation and migration by targeting SM22α through forming a complex with EZH2 and DNMT1, thereby aggravating the intimal hyperplasia after vascular injury in T2DM.

Abstract Image

CDKN2B-AS1介导胰岛素诱导的血管平滑肌细胞的增殖和迁移。
血管平滑肌细胞(VSMCs)的过度增殖和迁移导致2型糖尿病(T2DM)患者经皮冠状动脉介入治疗后内膜增生。我们旨在研究lncRNA细胞周期蛋白依赖性激酶抑制剂2B反义RNA 1(CDKN2B-AS1)在VSMC增殖和迁移中的作用及其潜在机制。体内使用颈动脉球囊损伤的T2DM模型小鼠,体外使用胰岛素刺激的小鼠主动脉血管平滑肌细胞(MOVAS)来评估CDKN2B-AS1在T2DM状态下血管损伤后VSMC增殖和迁移中的作用。为了研究细胞的活力和迁移,进行了MTT法和Transwell法。为了阐明潜在的分子机制,进行了甲基化特异性聚合酶链式反应、RNA免疫沉淀、RNA下拉、共免疫沉淀和染色质免疫沉淀。在体内,CDKN2B-AS1在颈总动脉组织中上调。在体外,胰岛素治疗增加了CDKN2B-AS1水平,增强了MOVAS细胞的增殖和迁移,而CDKN2B-AS1敲低则逆转了这种促进作用。CDKN2B-AS1与橙皮同源物增强子2(EZH2)和DNA甲基转移酶(胞嘧啶-5)1(DNMT1)形成复合物,以调节平滑肌22α(SM22α)甲基化水平。在胰岛素刺激的细胞中,SM22α敲低消除了CDKN2B-AS1敲低对细胞活力和迁移的抑制作用。注射慢病毒sh-CDKN2B-AS1减轻颈动脉球囊损伤的T2DM小鼠的内膜增生。胰岛素诱导的CDKN2B-AS1上调通过与EZH2和DNMT1形成复合物靶向SM22α促进细胞增殖和迁移,从而加重T2DM血管损伤后的内膜增生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信