DNA recognition and induced genome modification by a hydroxymethyl-γ tail-clamp peptide nucleic acid.

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Stanley N Oyaghire, Elias Quijano, J Dinithi R Perera, Hanna K Mandl, W Mark Saltzman, Raman Bahal, Peter M Glazer
{"title":"DNA recognition and induced genome modification by a hydroxymethyl-γ tail-clamp peptide nucleic acid.","authors":"Stanley N Oyaghire, Elias Quijano, J Dinithi R Perera, Hanna K Mandl, W Mark Saltzman, Raman Bahal, Peter M Glazer","doi":"10.1016/j.xcrp.2023.101635","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in <i>O</i>-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"4 10","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621889/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101635","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide nucleic acids (PNAs) can target and stimulate recombination reactions in genomic DNA. We have reported that γPNA oligomers possessing the diethylene glycol γ-substituent show improved efficacy over unmodified PNAs in stimulating recombination-induced gene modification. However, this structural modification poses a challenge because of the inherent racemization risk in O-alkylation of the precursory serine side chain. To circumvent this risk and improve γPNA accessibility, we explore the utility of γPNA oligomers possessing the hydroxymethyl-γ moiety for gene-editing applications. We demonstrate that a γPNA oligomer possessing the hydroxymethyl modification, despite weaker preorganization, retains the ability to form a hybrid with the double-stranded DNA target of comparable stability and with higher affinity than that of the diethylene glycol-γPNA. When formulated into poly(lactic-co-glycolic acid) nanoparticles, the hydroxymethyl-γPNA stimulates higher frequencies (≥ 1.5-fold) of gene modification than the diethylene glycol γPNA in mouse bone marrow cells.

Abstract Image

Abstract Image

Abstract Image

羟甲基-γ尾部钳肽核酸的DNA识别和诱导基因组修饰。
肽核酸(PNAs)可以靶向并刺激基因组DNA中的重组反应。我们已经报道了具有二甘醇γ-取代基的γPNA低聚物在刺激重组诱导的基因修饰方面比未修饰的PNA表现出更好的功效。然而,这种结构修饰带来了挑战,因为在前驱丝氨酸侧链的O-烷基化中存在固有的外消旋风险。为了规避这一风险并提高γPNA的可及性,我们探索了具有羟甲基-γ部分的γPNA寡聚物在基因编辑应用中的效用。我们证明,尽管预组织较弱,但具有羟甲基修饰的γPNA低聚物仍保留与双链DNA靶标形成杂交体的能力,该杂交体具有相当的稳定性和比二甘醇-γPNA更高的亲和力。当配制成聚乳酸-乙醇酸纳米颗粒时,在小鼠骨髓细胞中,羟甲基-γPNA比二甘醇γPNA刺激更高频率(≥1.5倍)的基因修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信