Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
BMB Reports Pub Date : 2024-05-01
Jeewan Chun, Ji-Hoi Moon, Kyu Hwan Kwack, Eun-Young Jang, Saebyeol Lee, Hak Kyun Kim, Jae-Hyung Lee
{"title":"Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction.","authors":"Jeewan Chun, Ji-Hoi Moon, Kyu Hwan Kwack, Eun-Young Jang, Saebyeol Lee, Hak Kyun Kim, Jae-Hyung Lee","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation. [BMB Reports 2024; 57(5): 232-237].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation. [BMB Reports 2024; 57(5): 232-237].

单细胞RNA测序揭示了软骨诱导下脂肪组织来源的间充质干细胞的异质性。
本研究使用基于液滴的单细胞RNA测序(scRNA-seq)研究了脂肪组织来源的间充质干细胞(AT-MSCs)对软骨形成诱导的反应。我们分析了来自对照细胞和诱导1周(1W)和2周(2W)的细胞的37219个高质量转录物。四个不同的细胞簇(0-3),通过大量分析无法检测,显示出不同的比例。簇1在对照细胞和1W细胞中占主导地位,而簇3、2和0分别只在对照细胞、1W细胞和2W细胞中占据主导地位。此外,集群中出现了异质性软骨形成标记物的表达。差异表达基因的基因本体论(GO)富集分析揭示了关键生物过程(BP)中的簇特异性变异:(1)簇1表现出与核糖体生物发生和翻译控制相关的GO-BP术语的上调,这对维持干细胞特性和稳态至关重要;(2) 此外,聚类1显示与线粒体氧化代谢相关的GO-BP术语的上调;(3) 簇3显示与细胞增殖相关的GO-BP术语的上调;(4) 簇合物0和2表现出与胶原原纤维组织和超分子纤维组织相关的GO-BP项的类似上调。然而,只有簇0显示出与核糖体产生相关的GO-BP术语显著减少,这意味着核糖体调节与AT-MSC的分化阶段之间存在潜在的相关性。总的来说,我们的发现突出了软骨形成刺激前后增殖和分化之间平衡不同的异质性细胞簇。这为AT MCS在软骨分化过程中的单细胞动力学提供了增强的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信