The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications

IF 8.6 2区 化学 Q1 Chemistry
Sariga, Anitha Varghese
{"title":"The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications","authors":"Sariga,&nbsp;Anitha Varghese","doi":"10.1007/s41061-023-00441-w","DOIUrl":null,"url":null,"abstract":"<div><p>The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"381 6","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-023-00441-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.

Abstract Image

二茂铁基电催化剂的复兴:性能、合成策略和应用。
氧化还原活性化合物二茂铁迷人的电化学性质激发了全球研究人员开发用于各种应用的二茂铁基电催化剂。其优点包括优异的化学和热稳定性、在有机溶剂中的溶解度、一对稳定的氧化还原态、快速的电子转移和无毒性,提高了其在各种电化学应用中的实用性。基于二茂铁的电催化剂的使用能够控制电极表面的固有性质和电活性位点,以实现特定的电化学活性。二茂铁及其衍生物可以作为潜在的氧化还原介质,促进电子转移速率,从而增强器件的反应动力学和电化学响应。二茂铁基化合物在较低的操作电位下具有出色的电催化活性,增强了反应的特异性和敏感性,也放大了反应信号。由于其多功能的氧化还原化学和催化活性,二茂铁基电催化剂广泛应用于各种能源相关系统、分子机器以及农业、生物、医药和传感应用。这篇综述强调了二茂铁基电催化剂的重要性,重点介绍了它们的性质、获得不同二茂铁化合物的合成策略及其电化学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信