Ting He, Hui Ma, Zhen Wang, Qing Li, Shuning Liu, Shikun Duan, Tengfei Xu, Jiacheng Wang, Haitao Wu, Fang Zhong, Yuting Ye, Jianghong Wu, Shuo Lin, Kun Zhang, Piotr Martyniuk, Antoni Rogalski, Peng Wang, Lan Li, Hongtao Lin, Weida Hu
{"title":"On-chip optoelectronic logic gates operating in the telecom band","authors":"Ting He, Hui Ma, Zhen Wang, Qing Li, Shuning Liu, Shikun Duan, Tengfei Xu, Jiacheng Wang, Haitao Wu, Fang Zhong, Yuting Ye, Jianghong Wu, Shuo Lin, Kun Zhang, Piotr Martyniuk, Antoni Rogalski, Peng Wang, Lan Li, Hongtao Lin, Weida Hu","doi":"10.1038/s41566-023-01309-7","DOIUrl":null,"url":null,"abstract":"Optoelectronic logic gates (OELGs) are promising building blocks for next-generation logic circuits and potential applications in light detection and ranging, machine vision and real-time video analysis. On-chip OELGs operating at telecom wavelengths are highly desirable for integration with the growing possibilities offered by silicon-based optoelectronics. However, at present operations are limited to linear logic functions in the ultraviolet or visible range and high-performance OELGs for multiple logic functions are lacking. Here we integrate up to three silicon waveguides with black phosphorus for optoelectronic logic operations at 1.55 μm. We demonstrate linear (AND, OR, NOT, NAND, NOR) and nonlinear (XOR and XNOR) OELGs by programming optical inputs into the waveguides and reading out electronic signals. The devices exhibit a responsivity as high as 0.35 A W−1 and a 3 dB bandwidth of 230 MHz. The combination of a photovoltaic OR gate and a voltage-switchable AND gate enables two-layer composite logic computing in the form (A + B)C. We also demonstrate symbol recognition, edge extraction, image fusion and encryption/decryption performed by these OELGs. This work paves the way for the development of new optoelectronic logic computing circuits. Integrating multiple silicon waveguides with black phosphorus enables the realization of a variety of optoelectronic logic gates operating at 1.55 μm.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 1","pages":"60-67"},"PeriodicalIF":32.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-023-01309-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optoelectronic logic gates (OELGs) are promising building blocks for next-generation logic circuits and potential applications in light detection and ranging, machine vision and real-time video analysis. On-chip OELGs operating at telecom wavelengths are highly desirable for integration with the growing possibilities offered by silicon-based optoelectronics. However, at present operations are limited to linear logic functions in the ultraviolet or visible range and high-performance OELGs for multiple logic functions are lacking. Here we integrate up to three silicon waveguides with black phosphorus for optoelectronic logic operations at 1.55 μm. We demonstrate linear (AND, OR, NOT, NAND, NOR) and nonlinear (XOR and XNOR) OELGs by programming optical inputs into the waveguides and reading out electronic signals. The devices exhibit a responsivity as high as 0.35 A W−1 and a 3 dB bandwidth of 230 MHz. The combination of a photovoltaic OR gate and a voltage-switchable AND gate enables two-layer composite logic computing in the form (A + B)C. We also demonstrate symbol recognition, edge extraction, image fusion and encryption/decryption performed by these OELGs. This work paves the way for the development of new optoelectronic logic computing circuits. Integrating multiple silicon waveguides with black phosphorus enables the realization of a variety of optoelectronic logic gates operating at 1.55 μm.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.