Niyousha Mortaza, Steven R Passmore, Katinka Stecina, Cheryl M Glazebrook
{"title":"Dual muscle tendon vibration does not impede performance of a goal-directed aiming task.","authors":"Niyousha Mortaza, Steven R Passmore, Katinka Stecina, Cheryl M Glazebrook","doi":"10.1080/08990220.2023.2272971","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Application of muscle-tendon vibration within the frequency range of 70-120Hz has been studied as a tool to stimulate somatosensory afferents with both the goal of studying human sensorimotor control and of improving post-stroke motor performance. Specific to applications for rehabilitation, current evidence is mixed as to whether dual muscle-tendon vibration is detrimental to the performance of goal-directed upper-limb movements. The current study aimed to determine the effects of muscle-tendon vibration over the wrist flexors and extensors (dual vibration) on performance of a computer goal-directed aiming task.</p><p><strong>Methods: </strong>Twenty healthy participants were assigned to the vibration or control group. An aiming task that involved acquiring targets by moving an unseen cursor on a screen was performed. Vision of the cursor and hand were unavailable throughout the four blocks of movement execution. Only the vibration group received dual vibration throughout four blocks. Task performance was assessed using measures of endpoint accuracy and timing. Perceived hand location was assessed using a set of questions and a computerised conscious perception task.</p><p><strong>Results: </strong>The vibration group had significantly shorter reaction times, without any change in endpoint accuracy, indicating more efficient and effective movement planning. The vibration group did report illusory movement sensation, which was reduced by block 4.</p><p><strong>Conclusions: </strong>Dual vibration did not adversely affect aiming accuracy and showed some improvement in reaction time. The present findings support the potential for using dual vibration to stimulate the somatosensory system as participants improved their performance of a novel goal-directed movement. Notably, improvements were maintained when the vibration was removed.</p>","PeriodicalId":94211,"journal":{"name":"Somatosensory & motor research","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory & motor research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08990220.2023.2272971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Application of muscle-tendon vibration within the frequency range of 70-120Hz has been studied as a tool to stimulate somatosensory afferents with both the goal of studying human sensorimotor control and of improving post-stroke motor performance. Specific to applications for rehabilitation, current evidence is mixed as to whether dual muscle-tendon vibration is detrimental to the performance of goal-directed upper-limb movements. The current study aimed to determine the effects of muscle-tendon vibration over the wrist flexors and extensors (dual vibration) on performance of a computer goal-directed aiming task.
Methods: Twenty healthy participants were assigned to the vibration or control group. An aiming task that involved acquiring targets by moving an unseen cursor on a screen was performed. Vision of the cursor and hand were unavailable throughout the four blocks of movement execution. Only the vibration group received dual vibration throughout four blocks. Task performance was assessed using measures of endpoint accuracy and timing. Perceived hand location was assessed using a set of questions and a computerised conscious perception task.
Results: The vibration group had significantly shorter reaction times, without any change in endpoint accuracy, indicating more efficient and effective movement planning. The vibration group did report illusory movement sensation, which was reduced by block 4.
Conclusions: Dual vibration did not adversely affect aiming accuracy and showed some improvement in reaction time. The present findings support the potential for using dual vibration to stimulate the somatosensory system as participants improved their performance of a novel goal-directed movement. Notably, improvements were maintained when the vibration was removed.