All Light, Everywhere? Photoreceptors at Nonconventional Sites.

IF 5.3 2区 医学 Q1 PHYSIOLOGY
Physiology Pub Date : 2024-01-01 Epub Date: 2023-10-31 DOI:10.1152/physiol.00017.2023
Audrey Mat, Hong Ha Vu, Eva Wolf, Kristin Tessmar-Raible
{"title":"All Light, Everywhere? Photoreceptors at Nonconventional Sites.","authors":"Audrey Mat, Hong Ha Vu, Eva Wolf, Kristin Tessmar-Raible","doi":"10.1152/physiol.00017.2023","DOIUrl":null,"url":null,"abstract":"<p><p>One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00017.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.

到处都是光吗?非常规部位的光受体。
我们对我们物种所做的最大的环境改变之一是暴露在光线下的变化。白天,我们通常坐在玻璃窗后面,人工光的亮度是自然光的400倍以上,光谱与自然光非常不同。另一端是夜晚,它们现在被照亮了几个数量级。这篇综述旨在为思考为什么这对人类和其他动物很重要提供依据。来自行为神经科学、生理学、时间生物学和分子生物学的证据越来越多地集中在以下结论上:光和光敏分子的生物非视觉功能是高度复杂的。von Frisch在鱼类眼外光感受器方面的初步工作,将视紫红质鉴定为动物眼睛和眼睛样结构中的分子光受体,并将隐花色素鉴定为非哺乳动物时间生物学中的光传感器,仍然给人留下了这样的印象,即在大多数动物中,光接收将是一种相对受限的、局部的感觉。然而,光敏过程和/或感觉蛋白现在已经定位于许多不同的细胞类型和组织。可能有必要将无光反应细胞视为例外,而不是规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信