Ying Du, Minhui Xu, Yan Su, Yujia Liu, Yiming Zhou, Xiaoping Gu, Tianjiao Xia
{"title":"Long-term sevoflurane exposure relieves stress-enhanced fear learning and anxiety in PTSD mice.","authors":"Ying Du, Minhui Xu, Yan Su, Yujia Liu, Yiming Zhou, Xiaoping Gu, Tianjiao Xia","doi":"10.1515/tnsci-2022-0313","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Post-traumatic stress disorder (PTSD) is characterized by recurrent episodes of severe anxiety after exposure to traumatic events. It is believed that these episodes are triggered at least in part by environmental stimuli associated with the precipitating trauma through classical conditioning, termed conditioned fear. However, traditional methods of conditioned fear memory extinction are frequently ineffective for PTSD treatment due to the contribution of non-associative sensitization caused by trauma. Anesthetics have shown promise for treating various psychiatric diseases such as depression.</p><p><strong>Methods: </strong>In this study, we examined if the inhaled anesthetic sevoflurane can suppress stress-enhanced fear learning (SEFL) in PTSD model mice. Model mice exposed to 2.4% sevoflurane for 6 h exhibited reduced freezing time and behavioral anxiety compared to sham-treated model mice. To explore the underlying mechanisms, we evaluated the regional expression levels of glucocorticoid receptors (GRs), cannabinoid CB1 receptors (CB1Rs), D1 dopamine receptors (D1Rs), and D2 dopamine receptors (D2Rs).</p><p><strong>Results: </strong>We verified that both GR and CB1R were significantly upregulated in the hippocampus, amygdaloid nucleus, and prefrontal cortex (PFC) of model mice, while D1R and D2R were downregulated. All of these expression changes were partially normalized in the PFC by 6 h but not with 2 h sevoflurane exposure.</p><p><strong>Conclusions: </strong>These results showed that sevoflurane exposure following traumatic events may be an effective treatment for PTSD.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220313"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Post-traumatic stress disorder (PTSD) is characterized by recurrent episodes of severe anxiety after exposure to traumatic events. It is believed that these episodes are triggered at least in part by environmental stimuli associated with the precipitating trauma through classical conditioning, termed conditioned fear. However, traditional methods of conditioned fear memory extinction are frequently ineffective for PTSD treatment due to the contribution of non-associative sensitization caused by trauma. Anesthetics have shown promise for treating various psychiatric diseases such as depression.
Methods: In this study, we examined if the inhaled anesthetic sevoflurane can suppress stress-enhanced fear learning (SEFL) in PTSD model mice. Model mice exposed to 2.4% sevoflurane for 6 h exhibited reduced freezing time and behavioral anxiety compared to sham-treated model mice. To explore the underlying mechanisms, we evaluated the regional expression levels of glucocorticoid receptors (GRs), cannabinoid CB1 receptors (CB1Rs), D1 dopamine receptors (D1Rs), and D2 dopamine receptors (D2Rs).
Results: We verified that both GR and CB1R were significantly upregulated in the hippocampus, amygdaloid nucleus, and prefrontal cortex (PFC) of model mice, while D1R and D2R were downregulated. All of these expression changes were partially normalized in the PFC by 6 h but not with 2 h sevoflurane exposure.
Conclusions: These results showed that sevoflurane exposure following traumatic events may be an effective treatment for PTSD.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.