Transglutaminase 2 Prevents Premature Senescence and Promotes Osteoblastic Differentiation of Mesenchymal Stem Cells through NRF2 Activation.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING
Stem Cells International Pub Date : 2023-10-20 eCollection Date: 2023-01-01 DOI:10.1155/2023/8815888
Soo-Jin Lee, Ji-Woong Shin, Mee-Ae Kwon, Ki Baek Lee, Hyo-Jun Kim, Jin-Haeng Lee, Heun-Soo Kang, Jong Kwan Jun, Sung-Yup Cho, In-Gyu Kim
{"title":"Transglutaminase 2 Prevents Premature Senescence and Promotes Osteoblastic Differentiation of Mesenchymal Stem Cells through NRF2 Activation.","authors":"Soo-Jin Lee,&nbsp;Ji-Woong Shin,&nbsp;Mee-Ae Kwon,&nbsp;Ki Baek Lee,&nbsp;Hyo-Jun Kim,&nbsp;Jin-Haeng Lee,&nbsp;Heun-Soo Kang,&nbsp;Jong Kwan Jun,&nbsp;Sung-Yup Cho,&nbsp;In-Gyu Kim","doi":"10.1155/2023/8815888","DOIUrl":null,"url":null,"abstract":"<p><p>Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During <i>in vitro</i> MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2023 ","pages":"8815888"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8815888","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.

谷氨酰胺转胺酶2通过NRF2激活防止早衰并促进间充质干细胞的成骨分化。
转谷氨酰胺酶2(TG2)是一种多功能酶,具有转氨酶、GTPase、激酶和蛋白二硫异构酶(PDI)活性。其中,转酰胺酶介导的蛋白质修饰调节细胞凋亡、分化、炎症和纤维化。与分化细胞相比,TG2在间充质干细胞(MSC)中高表达,这表明TG2对MSC特性具有特异性作用。在本研究中,我们报道了TG2在调节MSC氧化还原稳态中的一种新功能。在体外MSC扩增过程中,TG2是通过防止早衰进行细胞增殖和自我更新所必需的,但对表面抗原的表达和氧化应激诱导的细胞死亡没有影响。此外,分化诱导上调促进成骨细胞分化的TG2。分子分析表明,TG2以转酰胺酶活性无关的方式介导叔丁基对苯二酚,而不是萝卜硫素诱导的核因子红系2相关因子2(NRF2)激活。两种NRF2激活剂之间作用机制的差异表明,TG2的PDI活性可能与NRF2的稳定有关。MSC的转录组学分析进一步支持了TG2在调节抗氧化反应中的作用。这些结果表明,TG2是通过NRF2活化在MSC中引发抗氧化反应的关键酶,为优化MSC制造工艺以防止早衰提供了靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信