{"title":"Varifocal MEMS mirrors for high-speed axial focus scanning: a review.","authors":"Jaka Pribošek, Markus Bainschab, Takashi Sasaki","doi":"10.1038/s41378-022-00481-0","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances brought the performance of MEMS-based varifocal mirrors to levels comparable to conventional ultra-high-speed focusing devices. Varifocal mirrors are becoming capable of high axial resolution exceeding 300 resolvable planes, can achieve microsecond response times, continuous operation above several hundred kHz, and can be designed to combine focusing with lateral steering in a single-chip device. This survey summarizes the past 50 years of scientific progress in varifocal MEMS mirrors, providing the most comprehensive study in this field to date. We introduce a novel figure of merit for varifocal mirrors on the basis of which we evaluate and compare nearly all reported devices from the literature. At the forefront of this review is the analysis of the advantages and shortcomings of various actuation technologies, as well as a systematic study of methods reported to enhance the focusing performance in terms of speed, resolution, and shape fidelity. We believe this analysis will fuel the future technological development of next-generation varifocal mirrors reaching the axial resolution of 1000 resolvable planes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"9 ","pages":"135"},"PeriodicalIF":7.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-022-00481-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances brought the performance of MEMS-based varifocal mirrors to levels comparable to conventional ultra-high-speed focusing devices. Varifocal mirrors are becoming capable of high axial resolution exceeding 300 resolvable planes, can achieve microsecond response times, continuous operation above several hundred kHz, and can be designed to combine focusing with lateral steering in a single-chip device. This survey summarizes the past 50 years of scientific progress in varifocal MEMS mirrors, providing the most comprehensive study in this field to date. We introduce a novel figure of merit for varifocal mirrors on the basis of which we evaluate and compare nearly all reported devices from the literature. At the forefront of this review is the analysis of the advantages and shortcomings of various actuation technologies, as well as a systematic study of methods reported to enhance the focusing performance in terms of speed, resolution, and shape fidelity. We believe this analysis will fuel the future technological development of next-generation varifocal mirrors reaching the axial resolution of 1000 resolvable planes.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.