Assessing the Risk of Secondary Cancer Induction in Radiosensitive Organs During Trigeminal Neuralgia Treatment With Gamma Knife Radiosurgery: Impact of Extracranial Dose.
Ghazale Geraily, Ali Ameri, Atefeh Mahmoudi, Mohadese Moafee, Javad Teymouri
{"title":"Assessing the Risk of Secondary Cancer Induction in Radiosensitive Organs During Trigeminal Neuralgia Treatment With Gamma Knife Radiosurgery: Impact of Extracranial Dose.","authors":"Ghazale Geraily, Ali Ameri, Atefeh Mahmoudi, Mohadese Moafee, Javad Teymouri","doi":"10.1177/15593258231210432","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Gamma knife radiosurgery (GKRS) delivers high-dose external radiation to a small intracranial lesion. However, scattering and leaked radiation can deposit a portion of the dose outside the radiation field, which may pose a risk to radiation-sensitive patients, such as pregnant women. Trigeminal Neuralgia (TN) is treated with one of the highest GKRS doses (80-90 Gy). This study aimed to estimate the risk of secondary cancer induction in the uterus, ovaries, thyroid gland, and eyes of TN patients undergoing GKRS.</p><p><strong>Methods: </strong>Radiation doses to the uterus, ovary, eyes, and thyroid gland were measured for 25 female TN patients, with a mean age of 35 years, utilizing Thermo Luminescent Dosimeters (TLD).</p><p><strong>Results: </strong>The mean absorbed dose for the uterus, ovary, thyroid gland, and eyes were .63 ± .24, .471 ± .2, 8.26 ± 1.01, and 10.64 ± 1.08 cGy, respectively. Lifetime Attributable Risk (LAR) has been calculated using BEIR VII (2006) method. LAR for the uterus, ovary, and thyroid gland was 1, 2, and 23, respectively.</p><p><strong>Conclusion: </strong>The results of this study and its comparison with standard values demonstrate that on average, mean doses to mentioned organs were smaller than their tolerance doses, and there is no limitation to treating patients suffering from TN by GK.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15593258231210432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Gamma knife radiosurgery (GKRS) delivers high-dose external radiation to a small intracranial lesion. However, scattering and leaked radiation can deposit a portion of the dose outside the radiation field, which may pose a risk to radiation-sensitive patients, such as pregnant women. Trigeminal Neuralgia (TN) is treated with one of the highest GKRS doses (80-90 Gy). This study aimed to estimate the risk of secondary cancer induction in the uterus, ovaries, thyroid gland, and eyes of TN patients undergoing GKRS.
Methods: Radiation doses to the uterus, ovary, eyes, and thyroid gland were measured for 25 female TN patients, with a mean age of 35 years, utilizing Thermo Luminescent Dosimeters (TLD).
Results: The mean absorbed dose for the uterus, ovary, thyroid gland, and eyes were .63 ± .24, .471 ± .2, 8.26 ± 1.01, and 10.64 ± 1.08 cGy, respectively. Lifetime Attributable Risk (LAR) has been calculated using BEIR VII (2006) method. LAR for the uterus, ovary, and thyroid gland was 1, 2, and 23, respectively.
Conclusion: The results of this study and its comparison with standard values demonstrate that on average, mean doses to mentioned organs were smaller than their tolerance doses, and there is no limitation to treating patients suffering from TN by GK.