Ecological Role of Cyprideis torosa and Heterocypris salina (Crustacea, Ostracoda) in Saline Rivers of the Lake Elton Basin: Abundance, Biomass, Production, Fatty Acids.
Vladimir A Gusakov, Olesia N Makhutova, Michail I Gladyshev, Larisa V Golovatyuk, Tatiana D Zinchenko
{"title":"Ecological Role of <i>Cyprideis torosa</i> and <i>Heterocypris salina</i> (Crustacea, Ostracoda) in Saline Rivers of the Lake Elton Basin: Abundance, Biomass, Production, Fatty Acids.","authors":"Vladimir A Gusakov, Olesia N Makhutova, Michail I Gladyshev, Larisa V Golovatyuk, Tatiana D Zinchenko","doi":"10.6620/ZS.2021.60-53","DOIUrl":null,"url":null,"abstract":"<p><p>Saline rivers are highly productive ecosystems in arid regions. The meiobenthic community (bottom meiofauna) and its dominant representatives are one of the least studied components of these aquatic ecosystems. Ostracods <i>Cyprideis torosa</i> and <i>Heterocypris salina</i> are major consumers among the species of bottom meiofauna in saline rivers flowing into the hyperhaline Lake Elton (Volgograd Region, Russia). We estimated the abundance, biomass and production of <i>C. torosa</i>, the dominant species at the mouth of the polyhaline Chernavka River (average salinity is ~30 g l<sup>-1</sup>), and <i>H. salina</i>, the dominant species at the mouth of the mesohaline Bolshaya Samoroda River (~13 g l<sup>-1</sup>), in spring (May) and summer (August). Additionally, we studied the composition and content of fatty acids of the ostracods and their potential food sources (bottom sediments with bacterial-algal mats). We found that the abundance and biomass (wet weight with shells) of <i>C. torosa</i> in the Chernavka River and <i>H. salina</i> in the Bolshaya Samoroda River reached 3.5 × 10<sup>6</sup> ind. m<sup>-2</sup> and 117 g m<sup>-2</sup>, and 1.1 × 10<sup>5</sup> ind. m<sup>-2</sup> and 12 g m<sup>-2</sup>, respectively. The first species formed on average about 85% of the total abundance and 96% of the total biomass of the meiobenthos, and the second one, about 13% and 31%, respectively. The daily production of <i>C. torosa</i> and <i>H. salina</i> can reach 249 and 36 mg m<sup>-2</sup> ash-free dry weight, respectively. The results indicate that these species may play an important role in the total flow of matter and energy in the studied habitats. Based on the fatty acid (FA) composition of the ostracods and their food sources, it was found that <i>C. torosa</i> mainly consumed diatoms, while <i>H. salina</i> preferred bacteria, cyanobacteria, and green algae. Differences between the species were greater than differences between the bottom sediments from the rivers. It may mean that the ostracods selectively consumed different food items that may be related to the different nutrient requirements of the species. Seasonal changes in the FA compositions of the ostracods were higher than in their food sources (bottom sediments), which also indicates selective feeding of the species.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9121140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.6620/ZS.2021.60-53","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Saline rivers are highly productive ecosystems in arid regions. The meiobenthic community (bottom meiofauna) and its dominant representatives are one of the least studied components of these aquatic ecosystems. Ostracods Cyprideis torosa and Heterocypris salina are major consumers among the species of bottom meiofauna in saline rivers flowing into the hyperhaline Lake Elton (Volgograd Region, Russia). We estimated the abundance, biomass and production of C. torosa, the dominant species at the mouth of the polyhaline Chernavka River (average salinity is ~30 g l-1), and H. salina, the dominant species at the mouth of the mesohaline Bolshaya Samoroda River (~13 g l-1), in spring (May) and summer (August). Additionally, we studied the composition and content of fatty acids of the ostracods and their potential food sources (bottom sediments with bacterial-algal mats). We found that the abundance and biomass (wet weight with shells) of C. torosa in the Chernavka River and H. salina in the Bolshaya Samoroda River reached 3.5 × 106 ind. m-2 and 117 g m-2, and 1.1 × 105 ind. m-2 and 12 g m-2, respectively. The first species formed on average about 85% of the total abundance and 96% of the total biomass of the meiobenthos, and the second one, about 13% and 31%, respectively. The daily production of C. torosa and H. salina can reach 249 and 36 mg m-2 ash-free dry weight, respectively. The results indicate that these species may play an important role in the total flow of matter and energy in the studied habitats. Based on the fatty acid (FA) composition of the ostracods and their food sources, it was found that C. torosa mainly consumed diatoms, while H. salina preferred bacteria, cyanobacteria, and green algae. Differences between the species were greater than differences between the bottom sediments from the rivers. It may mean that the ostracods selectively consumed different food items that may be related to the different nutrient requirements of the species. Seasonal changes in the FA compositions of the ostracods were higher than in their food sources (bottom sediments), which also indicates selective feeding of the species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.