Dowodzenie hipotez za pomocą zzynnika bayesowskiego (bayes factor): przykłady użycia w badaniach empirycznych

Q3 Social Sciences
Decyzje Pub Date : 2016-12-15 DOI:10.7206/DEC.1733-0092.79
A. Domurat, M. Białek
{"title":"Dowodzenie hipotez za pomocą zzynnika bayesowskiego (bayes factor): przykłady użycia w badaniach empirycznych","authors":"A. Domurat, M. Białek","doi":"10.7206/DEC.1733-0092.79","DOIUrl":null,"url":null,"abstract":"Statistical tests are used in science in order to support research hypotheses (theory, model). The Bayes Factor (BF) is a method that weighs evidence and shows which out of two hypotheses is better supported. Adopting the BF in statistical inference, we can show whether data provided stronger support for the null hypothesis, the alternative hypothesis or whether it is inconclusive and more data needs to be collected to provide more decisive evidence. Such a symmetry in interpretation is an advantage of the Bayes Factor over classical null hypothesis signifi cance testing (NHST). Using NHST, a researcher draws conclusions indirectly, by rejecting or not rejecting the null hypothesis. The discrepancy between these decisions and the researcher’s needs, often leads to misinterpretation of signifi cance test results, e.g. by concluding that non-signifi cant p-values are evidence for the absence of differences between groups or that variables are independent. In this work we show the main differences between the Bayesian and the frequential approach to the understanding of probability and statistical inference. We demonstrate how to verify hypotheses using the BF in practice and provide concrete examples of how it modifi es conclusions about empirical fi ndings based on the NHST procedure and the interpretation of p-values. We discuss the advantages of the BF – particularly the validation of a null hypothesis. Additionally, we provide some guidelines on how to do Bayesian statistics using the freeware statistical program JASP 0.8.","PeriodicalId":37255,"journal":{"name":"Decyzje","volume":"1 1","pages":"109-141"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decyzje","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7206/DEC.1733-0092.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

Abstract

Statistical tests are used in science in order to support research hypotheses (theory, model). The Bayes Factor (BF) is a method that weighs evidence and shows which out of two hypotheses is better supported. Adopting the BF in statistical inference, we can show whether data provided stronger support for the null hypothesis, the alternative hypothesis or whether it is inconclusive and more data needs to be collected to provide more decisive evidence. Such a symmetry in interpretation is an advantage of the Bayes Factor over classical null hypothesis signifi cance testing (NHST). Using NHST, a researcher draws conclusions indirectly, by rejecting or not rejecting the null hypothesis. The discrepancy between these decisions and the researcher’s needs, often leads to misinterpretation of signifi cance test results, e.g. by concluding that non-signifi cant p-values are evidence for the absence of differences between groups or that variables are independent. In this work we show the main differences between the Bayesian and the frequential approach to the understanding of probability and statistical inference. We demonstrate how to verify hypotheses using the BF in practice and provide concrete examples of how it modifi es conclusions about empirical fi ndings based on the NHST procedure and the interpretation of p-values. We discuss the advantages of the BF – particularly the validation of a null hypothesis. Additionally, we provide some guidelines on how to do Bayesian statistics using the freeware statistical program JASP 0.8.
使用贝叶斯因子的假设:在实证研究中的应用实例
统计检验在科学中用于支持研究假设(理论、模型)。贝叶斯因子(BF)是一种衡量证据并显示两个假设中哪一个得到更好支持的方法。在统计推断中采用BF,我们可以表明数据是否为零假设、备择假设提供了更强的支持,或者是否不确定,需要收集更多的数据来提供更决定性的证据。这种解释的对称性是贝叶斯因子优于经典零假设显著性检验(NHST)的优势。使用NHST,研究人员通过拒绝或不拒绝零假设间接得出结论。这些决定与研究人员的需求之间的差异常常导致对显著性检验结果的误解,例如得出结论,认为非显著p值是组间不存在差异或变量是独立的证据。在这项工作中,我们展示了贝叶斯方法和频率方法在理解概率和统计推断方面的主要区别。我们演示了如何在实践中使用BF验证假设,并提供了具体的例子,说明它如何修改基于NHST程序和p值解释的经验发现的结论。我们讨论了BF的优点,特别是零假设的验证。此外,我们还提供了一些关于如何使用免费统计程序JASP 0.8进行贝叶斯统计的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decyzje
Decyzje Social Sciences-Law
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信