The Numerical Solution of Heat Problem Using Cubic B-Splines

IF 1.2 Q2 MATHEMATICS, APPLIED
D. Demir, N. Bildik
{"title":"The Numerical Solution of Heat Problem Using Cubic B-Splines","authors":"D. Demir, N. Bildik","doi":"10.5923/J.AM.20120204.06","DOIUrl":null,"url":null,"abstract":"This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the reliability and the efficiency of the method.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120204.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

This paper discusses solving one of the important equations in Physics; which is the one-dimensional heat equation. For that purpose, we use cubic B-spline fin ite elements within a Collocation method. The scheme of the method is presented and the stability analysis is investigated by considering Fourier stability method. On the other hand, a comparative study between the numerical and the analytic solution is illustrated by the figure and the tables. The results demonstrate the reliability and the efficiency of the method.
热问题的三次b样条数值解
本文讨论了物理学中一个重要方程的解法;这是一维的热方程。为此,我们在搭配方法中使用三次b样条有限元。提出了该方法的方案,并考虑傅里叶稳定性法对其稳定性进行了分析。另一方面,数值解与解析解的对比研究用图和表来说明。结果表明了该方法的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信