Mathematical Modelling of HIV/AIDS Dynamics with Treatment and Vertical Transmission

IF 1.2 Q2 MATHEMATICS, APPLIED
Abdallah S. Waziri, E. Massawe, O. Makinde
{"title":"Mathematical Modelling of HIV/AIDS Dynamics with Treatment and Vertical Transmission","authors":"Abdallah S. Waziri, E. Massawe, O. Makinde","doi":"10.5923/J.AM.20120203.06","DOIUrl":null,"url":null,"abstract":"This paper examines the dynamics of HIV/AIDS with treatment and vertical transmission. A nonlinear deterministic mathematical model for the problem is proposed and analysed qualitatively using the stability theory of differential equations. Local stability of the disease free equilibrium of the model was established by the next generation method. The results show that the disease free equilibrium is locally stable at threshold parameter less than unity and unstable at threshold parameter greater than unity. Globally, the disease free equilibrium is not stable due existence of forward bifurcation at threshold parameter equal to unity. However, it is shown that using treatment measures (ARVs) and control of the rate of vertical transmission have the effect of reducing the transmission of the disease significantly. Numerical simulation of the model is implemented to investigate the sensitivity of certain key parameters on the spread of the disease.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"2 1","pages":"77-89"},"PeriodicalIF":1.2000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.AM.20120203.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 56

Abstract

This paper examines the dynamics of HIV/AIDS with treatment and vertical transmission. A nonlinear deterministic mathematical model for the problem is proposed and analysed qualitatively using the stability theory of differential equations. Local stability of the disease free equilibrium of the model was established by the next generation method. The results show that the disease free equilibrium is locally stable at threshold parameter less than unity and unstable at threshold parameter greater than unity. Globally, the disease free equilibrium is not stable due existence of forward bifurcation at threshold parameter equal to unity. However, it is shown that using treatment measures (ARVs) and control of the rate of vertical transmission have the effect of reducing the transmission of the disease significantly. Numerical simulation of the model is implemented to investigate the sensitivity of certain key parameters on the spread of the disease.
HIV/AIDS治疗和垂直传播动力学的数学建模
本文探讨了动态的艾滋病毒/艾滋病与治疗和垂直传播。提出了该问题的非线性确定性数学模型,并利用微分方程稳定性理论对其进行了定性分析。采用次代法建立了模型的无病平衡点的局部稳定性。结果表明,无病平衡在阈值参数小于单位时是局部稳定的,在阈值参数大于单位时是不稳定的。全局无病平衡不稳定,因为在阈值参数等于1时存在正向分岔。然而,研究表明,使用治疗措施(ARVs)和控制垂直传播率具有显著减少疾病传播的效果。对该模型进行了数值模拟,研究了某些关键参数对疾病传播的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信