Pixel and object-based land cover mapping and change detection from 1986 to 2020 for Hungary using histogram-based gradient boosting classification tree classifier

IF 1.2 Q3 GEOGRAPHY
András Gudmann, L. Mucsi
{"title":"Pixel and object-based land cover mapping and change detection from 1986 to 2020 for Hungary using histogram-based gradient boosting classification tree classifier","authors":"András Gudmann, L. Mucsi","doi":"10.5937/gp26-37720","DOIUrl":null,"url":null,"abstract":"The large-scale pixel-based land use/land cover classification is a challenging task, which depends on many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hungary. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. According to the results, the classifier, with the use of texture variance and landscape metrics is capable to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed image of the land use changes.","PeriodicalId":44646,"journal":{"name":"Geographica Pannonica","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographica Pannonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/gp26-37720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

The large-scale pixel-based land use/land cover classification is a challenging task, which depends on many circumstances. This study aims to create LULC maps with the nomenclature of Coordination of Information on the Environment (CORINE) Land Cover (CLC) for years when the CLC databases are not available. Furthermore, testing the predicted maps for land use changes in the last 30 years in Hungary. Histogram-based gradient boosting classification tree (HGBCT) classifier was tested at classification. According to the results, the classifier, with the use of texture variance and landscape metrics is capable to generate accurate predicted maps, and the comparison of the predicted maps provides a detailed image of the land use changes.
基于直方图梯度增强分类树分类器的1986 - 2020年匈牙利基于像素和物体的土地覆盖制图和变化检测
基于像元的大尺度土地利用/土地覆盖分类是一项具有挑战性的任务,它取决于多种情况。本研究的目的是在环境信息协调(CORINE)土地覆盖(CLC)数据库不可用的年份,以CLC的命名法创建LULC地图。此外,对匈牙利过去30年土地利用变化的预测地图进行了测试。对基于直方图的梯度增强分类树(HGBCT)分类器进行了分类测试。结果表明,该分类器能够利用纹理方差和景观指标生成准确的预测图,预测图的对比提供了土地利用变化的详细图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
11.10%
发文量
8
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信