L. Balaj, F. Momen-Heravi, Weilin Chen, S. Sivaraman, Xuan Zhang, N. Ludwig, E. Meese, T. Wurdinger, D. Noske, A. Charest, F. Hochberg, P. Vandertop, J. Skog, W. Kuo
{"title":"Detection of Human c-Myc and EGFR Amplifications in Circulating Extracellular Vesicles in Mouse Tumour Models","authors":"L. Balaj, F. Momen-Heravi, Weilin Chen, S. Sivaraman, Xuan Zhang, N. Ludwig, E. Meese, T. Wurdinger, D. Noske, A. Charest, F. Hochberg, P. Vandertop, J. Skog, W. Kuo","doi":"10.5772/59174","DOIUrl":null,"url":null,"abstract":"Essentially, all cells release extracellular vesicles (EVs) that end up in biofluids, including blood, and the contents of these EVs can provide a window into the status of the cells from which they are released. This is particularly interesting in cancer, since these EVs allow for ‘ex-vivo’ analysis of the properties of the tumours without the need for biopsy. Gene mutations, rearrangements, amplifications, and epigenetic changes in the transcriptome can be monitored in circulating EVs. In this study, we used two human tumour cell lines derived from an epidermoid carcinoma and a medulloblastoma, which had amplification for the epidermal growth factor receptor (EGFR) and c-Myc genes, respectively. Cells were implanted subcutaneously into immunocompromised mice, and levels of gene amplification in both groups of subcutaneous tumours were quantified. We then determined if elevated levels of transcripts for the human EGFR and c-Myc were represented in circulating EVs in tumour-bearing mice. The expression levels of both human EGFR (h-EGFR) and human c-Myc (h-c-Myc) mRNAs in circulating EVs correlated well with their amplified status in the tumours. This data provides further support to the idea that circulating EVs are a potential platform for tumour biomarkers.","PeriodicalId":37524,"journal":{"name":"Journal of Circulating Biomarkers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circulating Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/59174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
Essentially, all cells release extracellular vesicles (EVs) that end up in biofluids, including blood, and the contents of these EVs can provide a window into the status of the cells from which they are released. This is particularly interesting in cancer, since these EVs allow for ‘ex-vivo’ analysis of the properties of the tumours without the need for biopsy. Gene mutations, rearrangements, amplifications, and epigenetic changes in the transcriptome can be monitored in circulating EVs. In this study, we used two human tumour cell lines derived from an epidermoid carcinoma and a medulloblastoma, which had amplification for the epidermal growth factor receptor (EGFR) and c-Myc genes, respectively. Cells were implanted subcutaneously into immunocompromised mice, and levels of gene amplification in both groups of subcutaneous tumours were quantified. We then determined if elevated levels of transcripts for the human EGFR and c-Myc were represented in circulating EVs in tumour-bearing mice. The expression levels of both human EGFR (h-EGFR) and human c-Myc (h-c-Myc) mRNAs in circulating EVs correlated well with their amplified status in the tumours. This data provides further support to the idea that circulating EVs are a potential platform for tumour biomarkers.
期刊介绍:
Journal of Circulating Biomarkers is an international, peer-reviewed, open access scientific journal focusing on all aspects of the rapidly growing field of circulating blood-based biomarkers and diagnostics using circulating protein and lipid markers, circulating tumor cells (CTC), circulating cell-free DNA (cfDNA) and extracellular vesicles, including exosomes, microvesicles, microparticles, ectosomes and apoptotic bodies. The journal publishes high-impact articles that deal with all fields related to circulating biomarkers and diagnostics, ranging from basic science to translational and clinical applications. Papers from a wide variety of disciplines are welcome; interdisciplinary studies are especially suitable for this journal. Included within the scope are a broad array of specialties including (but not limited to) cancer, immunology, neurology, metabolic diseases, cardiovascular medicine, regenerative medicine, nosology, physiology, pathology, technological applications in diagnostics, therapeutics, vaccine, drug delivery, regenerative medicine, drug development and clinical trials. The journal also hosts reviews, perspectives and news on specific topics.