An accurate Alzheimer disease diagnosis approach based on samples balancedgenetic algorithm and extreme learning machine using MRI.

Vasily Sachnev
{"title":"An accurate Alzheimer disease diagnosis approach based on samples balancedgenetic algorithm and extreme learning machine using MRI.","authors":"Vasily Sachnev","doi":"10.4172/0975-9042.000128","DOIUrl":null,"url":null,"abstract":"A Samples Balanced Genetic Algorithm and Extreme Learning Machine (SBGA-ELM) designed for accurate Alzheimer Disease diagnosis and identifying biomarkers associated with AD is presented in this paper. Proposed Alzheimer Disease diagnosis approach uses set of MRI of OASIS public database to build an efficient AD classifier. Proposed Alzheimer Disease diagnosis approach contains 2 steps: 1) “voxels selection” based on Samples Balanced Genetic Algorithm (SBGA), and 2) “AD classification” based on Extreme Learning Machine (ELM). In a first step “voxels selection” step a subset of voxels with promising properties for AD diagnosis is selected from a complete set of 19879 voxels extracted from OASIS data base. A selection process is extremely complex and requires specifically designed technique. In this paper, we propose a Samples Balanced Genetic Algorithm (SBGA) for searching a subset of voxels among 19879 voxels from OASIS database. In a second “AD classification” step, a discovered subset of voxels is used to construct an efficient AD classifier based on Extreme Learning Machine (ELM). A discovered subset of voxels keeps high generalization performances of AD classification using ELM in various scenarios and highlights importance of the chosen voxels for AD research. AD classifier with maximum classification accuracy created using the best set of chosen voxels is our final AD diagnosis approach and the best set of chosen voxels is potential AD biomarkers. Experiments with proposed SBGA-ELM show an average testing accuracy 87%. Experiments clearly indicate the efficiency of the proposed SBGA-ELM for AD diagnosis and highlight improvement over existing techniques.","PeriodicalId":89670,"journal":{"name":"Current neurobiology","volume":"7 1","pages":"90-99"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/0975-9042.000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Samples Balanced Genetic Algorithm and Extreme Learning Machine (SBGA-ELM) designed for accurate Alzheimer Disease diagnosis and identifying biomarkers associated with AD is presented in this paper. Proposed Alzheimer Disease diagnosis approach uses set of MRI of OASIS public database to build an efficient AD classifier. Proposed Alzheimer Disease diagnosis approach contains 2 steps: 1) “voxels selection” based on Samples Balanced Genetic Algorithm (SBGA), and 2) “AD classification” based on Extreme Learning Machine (ELM). In a first step “voxels selection” step a subset of voxels with promising properties for AD diagnosis is selected from a complete set of 19879 voxels extracted from OASIS data base. A selection process is extremely complex and requires specifically designed technique. In this paper, we propose a Samples Balanced Genetic Algorithm (SBGA) for searching a subset of voxels among 19879 voxels from OASIS database. In a second “AD classification” step, a discovered subset of voxels is used to construct an efficient AD classifier based on Extreme Learning Machine (ELM). A discovered subset of voxels keeps high generalization performances of AD classification using ELM in various scenarios and highlights importance of the chosen voxels for AD research. AD classifier with maximum classification accuracy created using the best set of chosen voxels is our final AD diagnosis approach and the best set of chosen voxels is potential AD biomarkers. Experiments with proposed SBGA-ELM show an average testing accuracy 87%. Experiments clearly indicate the efficiency of the proposed SBGA-ELM for AD diagnosis and highlight improvement over existing techniques.
基于样本平衡遗传算法和极限学习机的MRI阿尔茨海默病精确诊断方法
提出了一种基于样本平衡遗传算法和极限学习机(SBGA-ELM)的阿尔茨海默病准确诊断和识别与AD相关的生物标志物的方法。提出的阿尔茨海默病诊断方法利用OASIS公共数据库的MRI集来构建高效的AD分类器。提出的阿尔茨海默病诊断方法包括2个步骤:1)基于样本平衡遗传算法(SBGA)的“体素选择”和2)基于极限学习机(ELM)的“AD分类”。在第一步“体素选择”步骤中,从OASIS数据库中提取的19879个完整体素中选择具有AD诊断前景的体素子集。选择过程极其复杂,需要专门设计的技术。本文提出了一种样本平衡遗传算法(SBGA),用于从OASIS数据库的19879个体素中搜索一个体素子集。在第二个“AD分类”步骤中,使用发现的体素子集来构建基于极限学习机(ELM)的高效AD分类器。发现的体素子集在各种场景下保持了使用ELM进行AD分类的高泛化性能,并突出了所选择的体素对AD研究的重要性。使用最佳选择体素集创建具有最高分类精度的AD分类器是我们最终的AD诊断方法,而最佳选择体素集是潜在的AD生物标志物。实验结果表明,该算法的平均检测准确率为87%。实验清楚地表明了SBGA-ELM在AD诊断中的有效性,并突出了对现有技术的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信