Characteristics of Atmospheric Particle-bound Polycyclic Aromatic Compounds over the Himalayan Middle Hills: Implications for Sources and Health Risk Assessment
Linda Maharjan, Lekhendra Tripathee, Shichang Kang, Balram Ambade, Pengfei Chen, Huijun Zheng, Quanlian Li, Kundan Lal Shrestha, Chhatra Mani Sharma
{"title":"Characteristics of Atmospheric Particle-bound Polycyclic Aromatic Compounds over the Himalayan Middle Hills: Implications for Sources and Health Risk Assessment","authors":"Linda Maharjan, Lekhendra Tripathee, Shichang Kang, Balram Ambade, Pengfei Chen, Huijun Zheng, Quanlian Li, Kundan Lal Shrestha, Chhatra Mani Sharma","doi":"10.5572/ajae.2021.101","DOIUrl":null,"url":null,"abstract":"<div><p>This study was conducted in the Central Himalayan middle hills to understand the nature of polycyclic aromatic hydrocarbons (PAHs) embedded in aerosol particles, their sources and human health risk assessments. The level of sum of 15 particle-phase PAHs was between 9 and 335 ng/m<sup>3</sup>, with an average concentration of 73±66 ng/m<sup>3</sup>. There were strong seasonal differences in total suspended particles (TSP) and particle-bound PAH concentrations with higher concentrations in winter, followed by pre-monsoon and lowest in monsoon. The main contributor to the suspended particles was 5-ring PAHs (32%), followed by 4-ring (29%), 6-ring (28%), and 3-ring PAHs (11%). Conversely, the gas-phase PAHs showed that 3-ring PAHs contributed utmost to the total particles. The molecular ratios and principal component analysis indicated that both petrogenic and pyrogenic sources, particularly fossil fuel combustion, biomass combustion, and car exhausts, were the major sources of PAHs. The overall average Benzo (a)pyrene equivalent concentration of particulate PAHs was 11.71 ng/m<sup>3</sup>, which substantially exceeded the WHO guideline (1 ng/m<sup>3</sup>), and indicated the potential health risks for local residents. The average lifetime inhalation cancer risk (ILCR) estimates associated with carcinogenic PAHs was 8.78×10<sup>−6</sup> for adults, suggesting the possible cancer risk and 2.47×10<sup>−5</sup> for children, signifying extreme carcinogenic effects of PAHs on children’s health. Therefore, strict measures should be taken to reduce PAHs emissions in the region.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.5572/ajae.2021.101.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.5572/ajae.2021.101","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted in the Central Himalayan middle hills to understand the nature of polycyclic aromatic hydrocarbons (PAHs) embedded in aerosol particles, their sources and human health risk assessments. The level of sum of 15 particle-phase PAHs was between 9 and 335 ng/m3, with an average concentration of 73±66 ng/m3. There were strong seasonal differences in total suspended particles (TSP) and particle-bound PAH concentrations with higher concentrations in winter, followed by pre-monsoon and lowest in monsoon. The main contributor to the suspended particles was 5-ring PAHs (32%), followed by 4-ring (29%), 6-ring (28%), and 3-ring PAHs (11%). Conversely, the gas-phase PAHs showed that 3-ring PAHs contributed utmost to the total particles. The molecular ratios and principal component analysis indicated that both petrogenic and pyrogenic sources, particularly fossil fuel combustion, biomass combustion, and car exhausts, were the major sources of PAHs. The overall average Benzo (a)pyrene equivalent concentration of particulate PAHs was 11.71 ng/m3, which substantially exceeded the WHO guideline (1 ng/m3), and indicated the potential health risks for local residents. The average lifetime inhalation cancer risk (ILCR) estimates associated with carcinogenic PAHs was 8.78×10−6 for adults, suggesting the possible cancer risk and 2.47×10−5 for children, signifying extreme carcinogenic effects of PAHs on children’s health. Therefore, strict measures should be taken to reduce PAHs emissions in the region.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.