{"title":"Emission and Combustion Characteristics of Vegetable Oil (Jatropha curcus) Blends in an Indirect Ignition Transportation Engine","authors":"Harish Kumar Gangwar, A. Agarwal","doi":"10.4271/2008-28-0034","DOIUrl":null,"url":null,"abstract":"The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from vegetable oils present promising “greener” substitutes for fossil fuels. Vegetable oils due to their agricultural origin are able to reduce net CO 2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines are reported, which are because of their higher viscosity and low volatility compared to mineral diesel. In the present research, an experiment was designed to study the effect of reducing Jatropha oil’s viscosity by blending it with mineral diesel, thereby eliminating its effect on combustion characteristics of the engine. In the present experimental research, vegetable oil (Jatropha curcus) was used as substitute fuel. Experimental investigations have been carried out to examine the emission and combustion characteristics of an indirect injection transportation diesel engine running with mineral diesel and vegetable oil blends. Engine tests were performed at different engine loads ranging from no load to 100% rated load at a constant engine speed (2000 rpm). A careful analysis of engine emissions, cylinder pressure rise, instantaneous heat release and cumulative heat release was carried out vis-a-vis mineral diesel to find the suitability of Jatropha oil blends in an unmodified IDI medium duty transportation diesel engine.","PeriodicalId":54137,"journal":{"name":"International Energy Journal","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2008-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4271/2008-28-0034","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2008-28-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 9
Abstract
The scarce and rapidly depleting conventional petroleum resources have promoted research for alternative fuels for internal combustion engines. Among various possible options, fuels derived from vegetable oils present promising “greener” substitutes for fossil fuels. Vegetable oils due to their agricultural origin are able to reduce net CO 2 emissions to the atmosphere along with import substitution of petroleum products. However, several operational and durability problems of using straight vegetable oils in diesel engines are reported, which are because of their higher viscosity and low volatility compared to mineral diesel. In the present research, an experiment was designed to study the effect of reducing Jatropha oil’s viscosity by blending it with mineral diesel, thereby eliminating its effect on combustion characteristics of the engine. In the present experimental research, vegetable oil (Jatropha curcus) was used as substitute fuel. Experimental investigations have been carried out to examine the emission and combustion characteristics of an indirect injection transportation diesel engine running with mineral diesel and vegetable oil blends. Engine tests were performed at different engine loads ranging from no load to 100% rated load at a constant engine speed (2000 rpm). A careful analysis of engine emissions, cylinder pressure rise, instantaneous heat release and cumulative heat release was carried out vis-a-vis mineral diesel to find the suitability of Jatropha oil blends in an unmodified IDI medium duty transportation diesel engine.
期刊介绍:
The journal provides a forum exchange of information, innovative and critical ideas on a wide range of issues in energy. The issues are addressed in four major areas as follows: Energy economics and policy including energy demand and supply study, resources document, transportation and conversion pricing, modeling, security and organizational structure, Energy technology including energy exploration, conversion, transportation technologies, utilization technologies such as rational use of energy in industry, energy efficient building system, system simulation, and cogeneration, Energy regulation, promotion, and environmental concerns including analysis of energy systems structure, restructuring, regulation and promotion for energy conservation, clean development mechanism, and energy enhancement of social development, Electric power system including electricity demand forecasting and planning, electric supply structure and economics, power system dynamics and stability, power system operation and control, and power distribution.