SIMULATION OF CONVECTIVE MOVEMENT OF METHANE IN DEAD-END PRODUCTION WITH SUCTION VENTILATION METHOD

IF 0.1 Q4 GEOSCIENCES, MULTIDISCIPLINARY
A. Shalimov, A. Isaevich
{"title":"SIMULATION OF CONVECTIVE MOVEMENT OF METHANE IN DEAD-END PRODUCTION WITH SUCTION VENTILATION METHOD","authors":"A. Shalimov, A. Isaevich","doi":"10.46689/2218-5194-2023-1-1-515-523","DOIUrl":null,"url":null,"abstract":"The analysis of the disadvantages and advantages of the suction method of ventilation of dead-end workings in comparison with the supply of air through the pipeline by injection is carried out. It is noted that when using the first method of ventilation, difficulties arise with regard to the removal of methane from the bottom-hole part of the working area, associated with the occurrence of convective thrust that lifts light gas up under the roof and pushes it against the movement of air in the direction of the mouth of the mine. An analytical model of the convective movement of methane in an inclined dead-end mine has been developed, on the basis of which a quantitative assessment of the minimum air supply rate for face ventilation has been made, in which all the released methane is removed by suction into the pipeline, without its part accumulating under the roof of the mine with a gradual spread of the methane-air mixture towards the mouth. Verification of the analytical results obtained by numerical simulation of changes in methane concentration along the length of the mine depending on the air velocity and the slope of the mine was carried out...","PeriodicalId":41869,"journal":{"name":"Proceedings of the Tula States University-Sciences of Earth","volume":"1 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tula States University-Sciences of Earth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46689/2218-5194-2023-1-1-515-523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of the disadvantages and advantages of the suction method of ventilation of dead-end workings in comparison with the supply of air through the pipeline by injection is carried out. It is noted that when using the first method of ventilation, difficulties arise with regard to the removal of methane from the bottom-hole part of the working area, associated with the occurrence of convective thrust that lifts light gas up under the roof and pushes it against the movement of air in the direction of the mouth of the mine. An analytical model of the convective movement of methane in an inclined dead-end mine has been developed, on the basis of which a quantitative assessment of the minimum air supply rate for face ventilation has been made, in which all the released methane is removed by suction into the pipeline, without its part accumulating under the roof of the mine with a gradual spread of the methane-air mixture towards the mouth. Verification of the analytical results obtained by numerical simulation of changes in methane concentration along the length of the mine depending on the air velocity and the slope of the mine was carried out...
吸力通风法模拟终端生产中甲烷对流运动
分析了死角工作面抽吸通风方式与管道注入送风方式的优缺点。值得注意的是,当使用第一种通风方法时,在从工作区域的底部部分清除甲烷方面出现了困难,这与对流推力的发生有关,该推力将轻质气体提升到顶板下并将其推向朝向矿井口方向的空气运动。建立了倾斜死角矿井中甲烷对流运动的分析模型,在此基础上定量评价了工作面通风的最小送风量,即释放的甲烷全部通过抽吸管道排出,部分不积聚在矿井顶板下,甲烷-空气混合物逐渐向井口扩散。对瓦斯浓度沿巷道长度随风速和巷道坡度变化的数值模拟分析结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信