{"title":"Identification of a <i>Candida albicans</i> Biofilm Inhibitor","authors":"Keita Odanaka","doi":"10.4236/ajmb.2022.122003","DOIUrl":null,"url":null,"abstract":"Candida albicans proliferates in the skin and oral cavity and is the causative agent of candida dermatitis and oral candidiasis. C. albicans is known to form biofilms on oral mucosa and denture surfaces. Formation of biofilms deteri-orates the permeability of antifungal drugs, decreasing their effectiveness. Therefore, in this study, I identified a compound with inhibitory activity against C. albicans biofilm formation. Heat shock protein 90 was selected as the target protein, and a potential ligand for the same was extracted and identified as 2-(4-methylpiperazin-1-yl)cyclopentanol. C. albicans was then cultured with varying concentrations of this compound: 0 mmol/L, 0.63 mmol/l. 2.5 mmol/l, and 10 mmol/l, and biofilm formation was measured via crystal violet assay. The findings demonstrated that 2-(4-methylpiperazin-1-yl)cyclo-pentanol substantially inhibits biofilm formation when added at a concentration of 0.63 mmol/l or higher. It is suggested that C. albicans could be elimi-nated more efficiently using this compound in combination with the existing antifungal drug miconazole. Further, the compound may also be useful as a disinfectant for medical devices, such as catheters, to prevent the formation of C. albicans biofilms.","PeriodicalId":65391,"journal":{"name":"美国分子生物学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分子生物学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajmb.2022.122003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans proliferates in the skin and oral cavity and is the causative agent of candida dermatitis and oral candidiasis. C. albicans is known to form biofilms on oral mucosa and denture surfaces. Formation of biofilms deteri-orates the permeability of antifungal drugs, decreasing their effectiveness. Therefore, in this study, I identified a compound with inhibitory activity against C. albicans biofilm formation. Heat shock protein 90 was selected as the target protein, and a potential ligand for the same was extracted and identified as 2-(4-methylpiperazin-1-yl)cyclopentanol. C. albicans was then cultured with varying concentrations of this compound: 0 mmol/L, 0.63 mmol/l. 2.5 mmol/l, and 10 mmol/l, and biofilm formation was measured via crystal violet assay. The findings demonstrated that 2-(4-methylpiperazin-1-yl)cyclo-pentanol substantially inhibits biofilm formation when added at a concentration of 0.63 mmol/l or higher. It is suggested that C. albicans could be elimi-nated more efficiently using this compound in combination with the existing antifungal drug miconazole. Further, the compound may also be useful as a disinfectant for medical devices, such as catheters, to prevent the formation of C. albicans biofilms.