A Multithreaded CGRA for Convolutional Neural Network Processing

Kota Ando, Shinya Takamaeda-Yamazaki, M. Ikebe, T. Asai, M. Motomura
{"title":"A Multithreaded CGRA for Convolutional Neural Network Processing","authors":"Kota Ando, Shinya Takamaeda-Yamazaki, M. Ikebe, T. Asai, M. Motomura","doi":"10.4236/CS.2017.86010","DOIUrl":null,"url":null,"abstract":"Convolutional neural network (CNN) is an essential model to achieve high accuracy in various machine learning applications, such as image recognition and natural language processing. One of the important issues for CNN acceleration with high energy efficiency and processing performance is efficient data reuse by exploiting the inherent data locality. In this paper, we propose a novel CGRA (Coarse Grained Reconfigurable Array) architecture with time-domain multithreading for exploiting input data locality. The multithreading on each processing element enables the input data reusing through multiple computation periods. This paper presents the accelerator design performance analysis of the proposed architecture. We examine the structure of memory subsystems, as well as the architecture of the computing array, to supply required data with minimal performance overhead. We explore efficient architecture design alternatives based on the characteristics of modern CNN configurations. The evaluation results show that the available bandwidth of the external memory can be utilized efficiently when the output plane is wider (in earlier layers of many CNNs) while the input data locality can be utilized maximally when the number of output channel is larger (in later layers).","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2017.86010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Convolutional neural network (CNN) is an essential model to achieve high accuracy in various machine learning applications, such as image recognition and natural language processing. One of the important issues for CNN acceleration with high energy efficiency and processing performance is efficient data reuse by exploiting the inherent data locality. In this paper, we propose a novel CGRA (Coarse Grained Reconfigurable Array) architecture with time-domain multithreading for exploiting input data locality. The multithreading on each processing element enables the input data reusing through multiple computation periods. This paper presents the accelerator design performance analysis of the proposed architecture. We examine the structure of memory subsystems, as well as the architecture of the computing array, to supply required data with minimal performance overhead. We explore efficient architecture design alternatives based on the characteristics of modern CNN configurations. The evaluation results show that the available bandwidth of the external memory can be utilized efficiently when the output plane is wider (in earlier layers of many CNNs) while the input data locality can be utilized maximally when the number of output channel is larger (in later layers).
一个用于卷积神经网络处理的多线程CGRA
卷积神经网络(CNN)是各种机器学习应用中实现高精度的必要模型,如图像识别和自然语言处理。利用固有的数据局部性,实现高效的数据重用是提高CNN加速效率和处理性能的重要问题之一。在本文中,我们提出了一种新的CGRA(粗粒度可重构阵列)架构,该架构采用时域多线程技术来利用输入数据局域性。每个处理元素上的多线程使输入数据可以通过多个计算周期重用。本文对所提出的结构进行了加速器设计性能分析。我们检查内存子系统的结构,以及计算阵列的体系结构,以最小的性能开销提供所需的数据。我们根据现代CNN配置的特点探索高效的架构设计方案。评估结果表明,当输出平面较宽时(在许多cnn的早期层中),外部存储器的可用带宽可以得到有效利用,而当输出通道数量较大时(在后期层中),输入数据局部性可以得到最大利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
273
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信