Confidence Intervals of COVID-19 Vaccine Efficacy Rates

Q3 Mathematics
Frank Wang
{"title":"Confidence Intervals of COVID-19 Vaccine Efficacy Rates","authors":"Frank Wang","doi":"10.5038/1936-4660.14.2.1390","DOIUrl":null,"url":null,"abstract":"This tutorial uses publicly available data from drug makers and the Food and Drug Administration to guide learners to estimate the confidence intervals of COVID-19 vaccine efficacy rates with a Bayesian framework. Under the classical approach, there is no probability associated with a parameter, and the meaning of confidence intervals can be misconstrued by inexperienced students. With Bayesian statistics, one can find the posterior probability distribution of an unknown parameter, and state the probability of vaccine efficacy rate, which makes the communication of uncertainty more flexible. We use a hypothetical example and a real baseball example to guide readers to learn the beta-binomial model before analyzing the clinical trial data. This note is designed to be accessible for lower-level college students with elementary statistics and elementary algebra skills.","PeriodicalId":36166,"journal":{"name":"Numeracy","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numeracy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5038/1936-4660.14.2.1390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This tutorial uses publicly available data from drug makers and the Food and Drug Administration to guide learners to estimate the confidence intervals of COVID-19 vaccine efficacy rates with a Bayesian framework. Under the classical approach, there is no probability associated with a parameter, and the meaning of confidence intervals can be misconstrued by inexperienced students. With Bayesian statistics, one can find the posterior probability distribution of an unknown parameter, and state the probability of vaccine efficacy rate, which makes the communication of uncertainty more flexible. We use a hypothetical example and a real baseball example to guide readers to learn the beta-binomial model before analyzing the clinical trial data. This note is designed to be accessible for lower-level college students with elementary statistics and elementary algebra skills.
COVID-19疫苗有效率的置信区间
本教程使用来自制药商和食品和药物管理局的公开数据,指导学习者使用贝叶斯框架估计COVID-19疫苗有效性的置信区间。在经典方法下,不存在与参数相关的概率,并且没有经验的学生可能会误解置信区间的含义。利用贝叶斯统计,可以找到未知参数的后验概率分布,并陈述疫苗有效率的概率,使得不确定性的沟通更加灵活。我们用一个假设的例子和一个真实的棒球例子来指导读者在分析临床试验数据之前先学习β -二项模型。本笔记是为具有基本统计学和基本代数技能的较低水平的大学生设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numeracy
Numeracy Mathematics-Mathematics (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
13
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信