P. Audra, V. Heresanu, L. Barriquand, Mohamed El Kadiri Boutchich, S. Jaillet, E. Pons‐Branchu, P. Bosák, Hai Cheng, R. Edwards, Michel Renda
{"title":"Bat guano minerals and mineralization processes in Chameau Cave, Eastern Morocco","authors":"P. Audra, V. Heresanu, L. Barriquand, Mohamed El Kadiri Boutchich, S. Jaillet, E. Pons‐Branchu, P. Bosák, Hai Cheng, R. Edwards, Michel Renda","doi":"10.5038/1827-806X.50.1.2374","DOIUrl":null,"url":null,"abstract":"The decay of bat guano deposits in caves produces mineral accumulations, mainly phosphates and secondary sulfates. Chameau Cave, Eastern Morocco, is located in the semi-arid Bni Snassen Mountains. It is composed of semi-active and dry passages, and is featured by strong condensation-corrosion on the walls, presence of fluvial sediments, and old corroded flowstones. Due to forced and convective airflow, the cave is generally very dry, with some damp sites related to condensation. Samples collected on the surface of different passages and along two sediment profiles yielded minerals related to bat guano decay. On recent or fresh guano, precursor minerals correspond to sulfate (gypsum), phosphate-sulfate (ardealite) and phosphate (brushite). Phosphates (hydroxylapatite, fluorapatite) occur at the interface with host rock or carbonate speleothems. At the contact of phyllosilicates contained in allogenic fluvial deposits or shale partings, or with pyrite-rich sediments, various phosphates occur (Al-rich strengite, Fe-rich variscite, phosphosiderite, leucophosphite, spheniscidite, crandallite, minyulite, variscite, and strengite), the latter two minerals being the stable end-members. Black seams of oxyhydroxides (goethite, hematite, birnessite) line the contact between carbonate host rock and weathered fluvial deposits. After “digestion” by acidic guano leachates, fluvial deposits only display the most resistant minerals (quartz, muscovite, K-feldspars and Na-plagioclases) and weathering byproducts (kaolinite). We discuss the origin of a pure gypsum particle cone, possibly related to evaporation at the edge of a wet cupola and subsequent detachment of sulfate particles. Among environmental conditions, humidity is required for decay. In this dry cave, most of the damp originates from either permanent or seasonal condensation. Dust particle advection seems to be essential in providing compounds that are not present on fresh guano (quartz, clay minerals). Bat guano phosphatization has probably occurred since >100 ka. The Chameau Cave appears as an outstanding site for bat guano-related minerals (n = 12), including rare phosphates (spheniscidite and minyulite).","PeriodicalId":56286,"journal":{"name":"International Journal of Speleology","volume":"50 1","pages":"91-109"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Speleology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5038/1827-806X.50.1.2374","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The decay of bat guano deposits in caves produces mineral accumulations, mainly phosphates and secondary sulfates. Chameau Cave, Eastern Morocco, is located in the semi-arid Bni Snassen Mountains. It is composed of semi-active and dry passages, and is featured by strong condensation-corrosion on the walls, presence of fluvial sediments, and old corroded flowstones. Due to forced and convective airflow, the cave is generally very dry, with some damp sites related to condensation. Samples collected on the surface of different passages and along two sediment profiles yielded minerals related to bat guano decay. On recent or fresh guano, precursor minerals correspond to sulfate (gypsum), phosphate-sulfate (ardealite) and phosphate (brushite). Phosphates (hydroxylapatite, fluorapatite) occur at the interface with host rock or carbonate speleothems. At the contact of phyllosilicates contained in allogenic fluvial deposits or shale partings, or with pyrite-rich sediments, various phosphates occur (Al-rich strengite, Fe-rich variscite, phosphosiderite, leucophosphite, spheniscidite, crandallite, minyulite, variscite, and strengite), the latter two minerals being the stable end-members. Black seams of oxyhydroxides (goethite, hematite, birnessite) line the contact between carbonate host rock and weathered fluvial deposits. After “digestion” by acidic guano leachates, fluvial deposits only display the most resistant minerals (quartz, muscovite, K-feldspars and Na-plagioclases) and weathering byproducts (kaolinite). We discuss the origin of a pure gypsum particle cone, possibly related to evaporation at the edge of a wet cupola and subsequent detachment of sulfate particles. Among environmental conditions, humidity is required for decay. In this dry cave, most of the damp originates from either permanent or seasonal condensation. Dust particle advection seems to be essential in providing compounds that are not present on fresh guano (quartz, clay minerals). Bat guano phosphatization has probably occurred since >100 ka. The Chameau Cave appears as an outstanding site for bat guano-related minerals (n = 12), including rare phosphates (spheniscidite and minyulite).
期刊介绍:
The International Journal of Speleology has the aim to get cave and karst science known to an increasing number of scientists and scholars. The journal therefore offers the opportunity to all scientists working in and on karst to publish their original research articles or their review papers in an open access, high quality peer reviewed scientific journal at no cost. The journal offers the authors online first, open access, a free PDF of their article, and a wide range of abstracting and indexing services.