Perturbations of embedded eigenvalues for self-adjoint ODE systems

IF 0.8 4区 数学 Q2 MATHEMATICS
Sara Maad Sasane, Alexia Papalazarou
{"title":"Perturbations of embedded eigenvalues for self-adjoint ODE systems","authors":"Sara Maad Sasane, Alexia Papalazarou","doi":"10.4310/arkiv.2023.v61.n1.a9","DOIUrl":null,"url":null,"abstract":"We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in $L^2(\\mathbb R;\\mathbb R^n)$. In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a perturbation problem for embedded eigenvalues of a self-adjoint differential operator in $L^2(\mathbb R;\mathbb R^n)$. In particular, we study the set of all small perturbations in an appropriate Banach space for which the embedded eigenvalue remains embedded in the continuous spectrum. We show that this set of small perturbations forms a smooth manifold and we specify its co-dimension. Our methods involve the use of exponential dichotomies, their roughness property and Lyapunov-Schmidt reduction.
自伴随ODE系统嵌入特征值的扰动
考虑$L^2(\mathbb R;\mathbb R^n)$中自伴随微分算子嵌入特征值的摄动问题。特别地,我们研究了适当的巴拿赫空间中所有小扰动的集合,其中嵌入的特征值仍然嵌入在连续谱中。我们证明了这组小扰动形成了一个光滑流形,并指定了它的协维。我们的方法包括使用指数二分类,它们的粗糙度性质和李雅普诺夫-施密特约简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信