A Whittaker category for the symplectic Lie algebra and differential operators

IF 0.8 4区 数学 Q2 MATHEMATICS
Yang Li, Jun Zhao, Yuanyuan Zhang, Genqiang Liu
{"title":"A Whittaker category for the symplectic Lie algebra and differential operators","authors":"Yang Li, Jun Zhao, Yuanyuan Zhang, Genqiang Liu","doi":"10.4310/arkiv.2023.v61.n1.a7","DOIUrl":null,"url":null,"abstract":"For any $n\\in \\mathbb{Z}_{\\geq 2}$, let $\\mathfrak{m}_n$ be the subalgebra of $\\mathfrak{sp}_{2n}$ spanned by all long negative root vectors $X_{-2\\epsilon_i}$, $i=1,\\dots,n$. An $\\mathfrak{sp}_{2n}$-module $M$ is called a Whittaker module with respect to the Whittaker pair $(\\mathfrak{sp}_{2n},\\mathfrak{m}_n)$ if the action of $\\mathfrak{m}_n$ on $M$ is locally finite, according to a definition of Batra and Mazorchuk. This kind of modules are more general than the classical Whittaker modules defined by Kostant. In this paper, we show that each non-singular block $\\mathcal{WH}_{\\mathbf{a}}^{\\mu}$ with finite dimensional Whittaker vector subspaces is equivalent to a module category $\\mathcal{W}^{\\mathbf{a}}$ of the even Weyl algebra $\\mathcal{D}_n^{ev}$ which is semi-simple. As a corollary, any simple module in the block $\\mathcal{WH}_{\\mathbf{i}}^{-\\frac{1}{2}\\omega_n}$ for the fundamental weight $\\omega_n$ is equivalent to the Nilsson's module $N_{\\mathbf{i}}$ up to an automorphism of $\\mathfrak{sp}_{2n}$. We also characterize all possible algebra homomorphisms from $U(\\mathfrak{sp}_{2n})$ to the Weyl algebra $\\mathcal{D}_n$ under a natural condition.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

For any $n\in \mathbb{Z}_{\geq 2}$, let $\mathfrak{m}_n$ be the subalgebra of $\mathfrak{sp}_{2n}$ spanned by all long negative root vectors $X_{-2\epsilon_i}$, $i=1,\dots,n$. An $\mathfrak{sp}_{2n}$-module $M$ is called a Whittaker module with respect to the Whittaker pair $(\mathfrak{sp}_{2n},\mathfrak{m}_n)$ if the action of $\mathfrak{m}_n$ on $M$ is locally finite, according to a definition of Batra and Mazorchuk. This kind of modules are more general than the classical Whittaker modules defined by Kostant. In this paper, we show that each non-singular block $\mathcal{WH}_{\mathbf{a}}^{\mu}$ with finite dimensional Whittaker vector subspaces is equivalent to a module category $\mathcal{W}^{\mathbf{a}}$ of the even Weyl algebra $\mathcal{D}_n^{ev}$ which is semi-simple. As a corollary, any simple module in the block $\mathcal{WH}_{\mathbf{i}}^{-\frac{1}{2}\omega_n}$ for the fundamental weight $\omega_n$ is equivalent to the Nilsson's module $N_{\mathbf{i}}$ up to an automorphism of $\mathfrak{sp}_{2n}$. We also characterize all possible algebra homomorphisms from $U(\mathfrak{sp}_{2n})$ to the Weyl algebra $\mathcal{D}_n$ under a natural condition.
辛李代数和微分算子的惠特克范畴
对于任意$n\in \mathbb{Z}_{\geq 2}$,设$\mathfrak{m}_n$为$\mathfrak{sp}_{2n}$的子代数由所有长的负根向量$X_{-2\epsilon_i}$, $i=1,\dots,n$张成。根据Batra和Mazorchuk的定义,如果$\mathfrak{m}_n$对$M$的作用是局部有限的,那么$\mathfrak{sp}_{2n}$ -模$M$就称为Whittaker模$(\mathfrak{sp}_{2n},\mathfrak{m}_n)$。这种模块比Kostant定义的经典Whittaker模块更通用。在本文中,我们证明了具有有限维Whittaker向量子空间的每个非奇异块$\mathcal{WH}_{\mathbf{a}}^{\mu}$等价于偶Weyl代数$\mathcal{D}_n^{ev}$的一个半简单模范畴$\mathcal{W}^{\mathbf{a}}$。作为推论,对于基本权重$\omega_n$,块$\mathcal{WH}_{\mathbf{i}}^{-\frac{1}{2}\omega_n}$中的任何简单模块都相当于尼尔森模块$N_{\mathbf{i}}$,直到自同构$\mathfrak{sp}_{2n}$。我们还刻画了在自然条件下从$U(\mathfrak{sp}_{2n})$到Weyl代数$\mathcal{D}_n$的所有可能的代数同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信