Explosive growth for a constrained Hastings–Levitov aggregation model

IF 0.8 4区 数学 Q2 MATHEMATICS
N. Berestycki, Vittoria Silvestri
{"title":"Explosive growth for a constrained Hastings–Levitov aggregation model","authors":"N. Berestycki, Vittoria Silvestri","doi":"10.4310/arkiv.2023.v61.n1.a3","DOIUrl":null,"url":null,"abstract":"We consider a constrained version of the HL$(0)$ Hastings--Levitov model of aggregation in the complex plane, in which particles can only attach to the part of the cluster that has already been grown. Although one might expect that this gives rise to a non-trivial limiting shape, we prove that the cluster grows explosively: in the upper half plane, the aggregate accumulates infinite diameter as soon as it reaches positive capacity. More precisely, we show that after $nt$ particles of (half-plane) capacity $1/(2n)$ have attached, the diameter of the shape is highly concentrated around $\\sqrt{t\\log n}$, uniformly in $t\\in [0,T]$. This illustrates a new instability phenomenon for the growth of single trees/fjords in unconstrained HL$(0)$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a constrained version of the HL$(0)$ Hastings--Levitov model of aggregation in the complex plane, in which particles can only attach to the part of the cluster that has already been grown. Although one might expect that this gives rise to a non-trivial limiting shape, we prove that the cluster grows explosively: in the upper half plane, the aggregate accumulates infinite diameter as soon as it reaches positive capacity. More precisely, we show that after $nt$ particles of (half-plane) capacity $1/(2n)$ have attached, the diameter of the shape is highly concentrated around $\sqrt{t\log n}$, uniformly in $t\in [0,T]$. This illustrates a new instability phenomenon for the growth of single trees/fjords in unconstrained HL$(0)$.
约束Hastings-Levitov聚集模型的爆炸性增长
我们考虑HL的约束版本$(0)$ Hastings—Levitov模型在复杂平面上的聚集,其中粒子只能附着在已经生长的簇的一部分。虽然人们可能会期望这将产生一个非平凡的极限形状,但我们证明了团簇是爆炸性增长的:在上半平面上,一旦达到正容量,团簇就会积累无限直径。更准确地说,我们表明,在(半平面)容量$1/(2n)$的$nt$粒子附着后,形状的直径高度集中在$\sqrt{t\log n}$周围,均匀地集中在$t\in [0,T]$。这说明了无约束HL中单树/峡湾生长的一种新的不稳定现象$(0)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信