Optimal unions of scaled copies of domains and Pólya's conjecture

IF 0.8 4区 数学 Q2 MATHEMATICS
P. Freitas, J. Lagac'e, Jordan Payette
{"title":"Optimal unions of scaled copies of domains and Pólya's conjecture","authors":"P. Freitas, J. Lagac'e, Jordan Payette","doi":"10.4310/arkiv.2021.v59.n1.a2","DOIUrl":null,"url":null,"abstract":"Given a bounded Euclidean domain $\\Omega$, we consider the sequence of optimisers of the $k^{\\rm th}$ Laplacian eigenvalue within the family consisting of all possible disjoint unions of scaled copies of $\\Omega$ with fixed total volume. We show that this sequence encodes information yielding conditions for $\\Omega$ to satisfy Polya's conjecture with either Dirichlet or Neumann boundary conditions. This is an extension of a result by Colbois and El Soufi which applies only to the case where the family of domains consists of all bounded domains. Furthermore, we fully classify the different possible behaviours for such sequences, depending on whether Polya's conjecture holds for a given specific domain or not. This approach allows us to recover a stronger version of Polya's original results for tiling domains satisfying some dynamical billiard conditions, and a strenghtening of Urakawa's bound in terms of packing density.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2021.v59.n1.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Given a bounded Euclidean domain $\Omega$, we consider the sequence of optimisers of the $k^{\rm th}$ Laplacian eigenvalue within the family consisting of all possible disjoint unions of scaled copies of $\Omega$ with fixed total volume. We show that this sequence encodes information yielding conditions for $\Omega$ to satisfy Polya's conjecture with either Dirichlet or Neumann boundary conditions. This is an extension of a result by Colbois and El Soufi which applies only to the case where the family of domains consists of all bounded domains. Furthermore, we fully classify the different possible behaviours for such sequences, depending on whether Polya's conjecture holds for a given specific domain or not. This approach allows us to recover a stronger version of Polya's original results for tiling domains satisfying some dynamical billiard conditions, and a strenghtening of Urakawa's bound in terms of packing density.
域的缩放副本的最优联合和Pólya的猜想
给定一个有界欧几里得定义域$\Omega$,我们考虑了由固定体积的$\Omega$的缩放副本的所有可能的不相交并组成的族中的$k^{\rm th}$拉普拉斯特征值的优化器序列。我们证明了该序列编码了$\Omega$的信息产生条件,以满足Polya猜想的Dirichlet或Neumann边界条件。这是Colbois和El Soufi的结果的推广,该结果仅适用于域族由所有有界域组成的情况。此外,我们对这些序列的不同可能行为进行了完全分类,这取决于Polya猜想是否适用于给定的特定域。这种方法允许我们恢复Polya的原始结果的一个更强的版本,以满足一些动态台球条件的平铺域,并在填充密度方面加强Urakawa的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信