Spectral asymptotics of Laplacians related to one-dimensional graph-directed self-similar measures with overlaps

IF 0.8 4区 数学 Q2 MATHEMATICS
Sze-Man Ngai, Yuanyuan Xie
{"title":"Spectral asymptotics of Laplacians related to one-dimensional graph-directed self-similar measures with overlaps","authors":"Sze-Man Ngai, Yuanyuan Xie","doi":"10.4310/arkiv.2020.v58.n2.a9","DOIUrl":null,"url":null,"abstract":"For the class of graph-directed self-similar measures on R, which could have overlaps but are essentially of finite type, we set up a framework for deriving a closed formula for the spectral dimension of the Laplacians defined by these measures. For the class of finitely ramified graph-directed self-similar sets, the spectral dimension of the associated Laplace operators has been obtained by Hambly and Nyberg [6]. The main novelty of our results is that the graphdirected self-similar measures we consider do not need to satisfy the graph open set condition.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

For the class of graph-directed self-similar measures on R, which could have overlaps but are essentially of finite type, we set up a framework for deriving a closed formula for the spectral dimension of the Laplacians defined by these measures. For the class of finitely ramified graph-directed self-similar sets, the spectral dimension of the associated Laplace operators has been obtained by Hambly and Nyberg [6]. The main novelty of our results is that the graphdirected self-similar measures we consider do not need to satisfy the graph open set condition.
具有重叠的一维图向自相似测度的拉普拉斯算子的谱渐近性
对于R上有重叠但本质上是有限型的图向自相似测度,我们建立了一个框架来推导由这些测度定义的拉普拉斯算子的谱维的封闭公式。对于一类有限分叉的图向自相似集,Hambly和Nyberg[6]给出了相关拉普拉斯算子的谱维数。我们的结果的主要新颖之处在于我们考虑的图向自相似度量不需要满足图开集条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信